BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38577375)

  • 1. Participation of electrochemically inserted protons in the hydrogen evolution reaction on tungsten oxides.
    Spencer MA; Holzapfel NP; You KE; Mpourmpakis G; Augustyn V
    Chem Sci; 2024 Apr; 15(14):5385-5402. PubMed ID: 38577375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical proton insertion modulates the hydrogen evolution reaction on tungsten oxides.
    Spencer MA; Fortunato J; Augustyn V
    J Chem Phys; 2022 Feb; 156(6):064704. PubMed ID: 35168339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sensitivity of Metal Oxide Electrocatalysis to Bulk Hydrogen Intercalation: Hydrogen Evolution on Tungsten Oxide.
    Miu EV; McKone JR; Mpourmpakis G
    J Am Chem Soc; 2022 Apr; 144(14):6420-6433. PubMed ID: 35289172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-coupled electron transfer at SOFC electrodes.
    Williams NJ; Warburton RE; Seymour ID; Cohen AE; Bazant MZ; Skinner SJ
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37352420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial Hydrogen Atom to Boost Intrinsic Catalytic Activity of Tungsten Oxide for Hydrogen Evolution Reaction.
    Yang J; Cao Y; Zhang S; Shi Q; Chen S; Zhu S; Li Y; Huang J
    Small; 2023 Jul; 19(29):e2207295. PubMed ID: 37029585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Intercalation of Mg
    Wang R; Chung CC; Liu Y; Jones JL; Augustyn V
    Langmuir; 2017 Sep; 33(37):9314-9323. PubMed ID: 28732164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof.
    Oberholzer P; Tervoort E; Bouzid A; Pasquarello A; Kundu D
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):674-682. PubMed ID: 30521309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-deficient tungsten oxide inducing electron and proton transfer: Activating ruthenium sites for hydrogen evolution in wide pH and alkaline seawater.
    Zhou B; Ding H; Jin W; Zhang Y; Wu Z; Wang L
    J Colloid Interface Sci; 2024 Apr; 660():321-333. PubMed ID: 38244499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide.
    Zhu M; Meng W; Huang Y; Huang Y; Zhi C
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18901-10. PubMed ID: 25280251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operando Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition.
    Wang R; Mitchell JB; Gao Q; Tsai WY; Boyd S; Pharr M; Balke N; Augustyn V
    ACS Nano; 2018 Jun; 12(6):6032-6039. PubMed ID: 29767999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the Gibbs Energy Contributions of Ion and Electron Transfer for Proton Insertion in ϵ-MnO
    Malaie K; Scholz F; Schröder U; Wulff H; Kahlert H
    Chemphyschem; 2022 Dec; 23(24):e202200364. PubMed ID: 36102179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution.
    Zheng X; Shi X; Ning H; Yang R; Lu B; Luo Q; Mao S; Xi L; Wang Y
    Nat Commun; 2023 Jul; 14(1):4209. PubMed ID: 37452036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production.
    Guan D; Xu H; Zhang Q; Huang YC; Shi C; Chang YC; Xu X; Tang J; Gu Y; Pao CW; Haw SC; Chen JM; Hu Z; Ni M; Shao Z
    Adv Mater; 2023 Nov; 35(44):e2305074. PubMed ID: 37452655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized Charge Storage in Aza-Based Covalent Organic Frameworks by Tuning Electrolyte Proton Activity.
    Tian Z; Kale VS; Shi Z; Yin J; Kandambeth S; Wang Y; Emwas AH; Lei Y; Guo X; Ming J; Wang W; Alsadun N; Shekhah O; Eddaoudi M; Alshareef HN
    ACS Nano; 2023 Jul; 17(14):13961-13973. PubMed ID: 37428125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.
    Klingan K; Ringleb F; Zaharieva I; Heidkamp J; Chernev P; Gonzalez-Flores D; Risch M; Fischer A; Dau H
    ChemSusChem; 2014 May; 7(5):1301-10. PubMed ID: 24449514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Active Tungsten Oxide Nanoplate Electrocatalysts for the Hydrogen Evolution Reaction in Acidic and Near Neutral Electrolytes.
    Nayak AK; Verma M; Sohn Y; Deshpande PA; Pradhan D
    ACS Omega; 2017 Oct; 2(10):7039-7047. PubMed ID: 31457286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patchwork-Structured Heterointerface of 1T-WS
    Cho J; Kim M; Seok H; Choi GH; Yoo SS; Sagaya Selvam NC; Yoo PJ; Kim T
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35549071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.
    Kim J; Sengodan S; Kwon G; Ding D; Shin J; Liu M; Kim G
    ChemSusChem; 2014 Oct; 7(10):2811-5. PubMed ID: 25146887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.