BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 38577377)

  • 21. Customization from Single to Dual Atomic Sites for Efficient Electrocatalytic CO
    Wei K; Pan K; Qu G; Zhou J
    Chem Asian J; 2023 Sep; 18(17):e202300498. PubMed ID: 37401141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Synthesis to Mechanisms: In-Depth Exploration of the Dual-Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis.
    Lei L; Guo X; Han X; Fei L; Guo X; Wang DG
    Adv Mater; 2024 Feb; ():e2311434. PubMed ID: 38377407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon-based material-supported single-atom catalysts for energy conversion.
    Zhang H; Liu W; Cao D; Cheng D
    iScience; 2022 Jun; 25(6):104367. PubMed ID: 35620439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review.
    Zhang L; Jin N; Yang Y; Miao XY; Wang H; Luo J; Han L
    Nanomicro Lett; 2023 Oct; 15(1):228. PubMed ID: 37831204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Symmetry-Breaking Centers and d-Orbital Modulation in Triatomic Catalysts for Zinc-Air Batteries.
    Zhong J; Liang Z; Liu N; Xiang Y; Yan B; Zhu F; Xie X; Gui X; Gan L; Yang HB; Yu D; Zeng Z; Yang G
    ACS Nano; 2024 Feb; ():. PubMed ID: 38315041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in the design of single-atom electrocatalysts by defect engineering.
    Li W; Chen Z; Jiang X; Jiang J; Zhang Y
    Front Chem; 2022; 10():1011597. PubMed ID: 36186588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO
    Wang J; Kim E; Kumar DP; Rangappa AP; Kim Y; Zhang Y; Kim TK
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202113044. PubMed ID: 34750936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries.
    Xie X; Zhai Z; Peng L; Zhang J; Shang L; Zhang T
    Sci Bull (Beijing); 2023 Nov; 68(22):2862-2875. PubMed ID: 37884426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic Molybdenum Nanomaterials for Electrocatalysis.
    Chen J; Guo S; Wang L; Liu S; Wang H; Zhao Q
    Small; 2024 May; ():e2401019. PubMed ID: 38757438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS).
    Song W; Xiao C; Ding J; Huang Z; Yang X; Zhang T; Mitlin D; Hu W
    Adv Mater; 2024 Jan; 36(1):e2301477. PubMed ID: 37078970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction.
    Cui X; Gao L; Lu CH; Ma R; Yang Y; Lin Z
    Nano Converg; 2022 Jul; 9(1):34. PubMed ID: 35867176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction.
    Tomboc GM; Kim T; Jung S; Yoon HJ; Lee K
    Small; 2022 Apr; 18(17):e2105680. PubMed ID: 35102698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO
    Han SG; Ma DD; Zhu QL
    Small Methods; 2021 Aug; 5(8):e2100102. PubMed ID: 34927867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic Metal-Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries.
    Wu M; Zhang G; Wang W; Yang H; Rawach D; Chen M; Sun S
    Small Methods; 2022 Mar; 6(3):e2100947. PubMed ID: 35037425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-Dependent Structures of Single-Atom Catalysts.
    Chen Y; Zhang R; Wang HT; Lu YR; Huang YC; Chuang YC; Wang H; Luo J; Han L
    Chem Asian J; 2023 Oct; 18(20):e202300679. PubMed ID: 37695094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inter-Metal Interaction with a Threshold Effect in NiCu Dual-Atom Catalysts for CO
    Yao D; Tang C; Zhi X; Johannessen B; Slattery A; Chern S; Qiao SZ
    Adv Mater; 2023 Mar; 35(11):e2209386. PubMed ID: 36433641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-supported single-atom catalysts and applications in electrocatalysis.
    Zhang Q; Zhang X; Wang J; Wang C
    Nanotechnology; 2021 Jan; 32(3):032001. PubMed ID: 33002887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anchoring Sites Engineering in Single-Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions.
    Zhao Y; Jiang WJ; Zhang J; Lovell EC; Amal R; Han Z; Lu X
    Adv Mater; 2021 Oct; 33(41):e2102801. PubMed ID: 34477254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.