BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38577415)

  • 1. Spatial habitat suitability prediction of essential oil wild plants on Indonesia's degraded lands.
    Renjana E; Firdiana ER; Angio MH; Ningrum LW; Lailaty IQ; Rahadiantoro A; Martiansyah I; Zulkarnaen R; Rahayu A; Raharjo PD; Abywijaya IK; Usmadi D; Risna RA; Cropper WP; Yudaputra A
    PeerJ; 2024; 12():e17210. PubMed ID: 38577415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of chemical components in two tree species of magnoliaceae,
    Wu F; Wei Q; Yang M; Deng R; Liu S
    Nat Prod Res; 2023 Jan; 37(2):328-332. PubMed ID: 34328033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitat potential modelling and mapping of Teucrium polium using machine learning techniques.
    Rahmanian S; Pourghasemi HR; Pouyan S; Karami S
    Environ Monit Assess; 2021 Oct; 193(11):759. PubMed ID: 34718878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model.
    Gogol-Prokurat M
    Ecol Appl; 2011 Jan; 21(1):33-47. PubMed ID: 21516886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models.
    Su H; Bista M; Li M
    Sci Rep; 2021 Jul; 11(1):14135. PubMed ID: 34238986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Habitat suitability and connectivity modeling predict genetic population structure and priority control areas for invasive nutria (Myocastor coypus) in a temperate river basin.
    Kang W; Kim G; Park Y
    PLoS One; 2022; 17(12):e0279082. PubMed ID: 36525436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the habitat distribution of rubber plantations with topography, soil, land use, and climatic factors.
    Selvalakshmi S; Kalarikkal RK; Yang X
    Environ Monit Assess; 2020 Aug; 192(9):598. PubMed ID: 32840701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran.
    Morovati M; Karami P; Bahadori Amjas F
    PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usutu virus induced mass mortalities of songbirds in Central Europe: Are habitat models suitable to predict dead birds in unsampled regions?
    Walter M; Brugger K; Rubel F
    Prev Vet Med; 2018 Nov; 159():162-170. PubMed ID: 30314779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire suppression and land-use strategies drive future dynamics of an invasive plant in a fire-prone mountain area under climate change.
    Lima CG; Campos JC; Regos A; Honrado JP; Fernandes PM; Freitas TR; Santos JA; Vicente JR
    J Environ Manage; 2024 May; 359():120997. PubMed ID: 38692031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the habitat suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables.
    Azrag AG; Mohamed SA; Ndlela S; Ekesi S
    Pest Manag Sci; 2022 Oct; 78(10):4114-4126. PubMed ID: 35657692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological analysis and environmental niche modelling of
    Wani IA; Verma S; Mushtaq S; Alsahli AA; Alyemeni MN; Tariq M; Pant S
    Saudi J Biol Sci; 2021 Apr; 28(4):2109-2122. PubMed ID: 33911927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming.
    Ren Z; Zagortchev L; Ma J; Yan M; Li J
    BMC Ecol; 2020 May; 20(1):28. PubMed ID: 32386506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the current and future distribution potential areas of Peperomia abyssinica Miq., and Helichrysum citrispinum Steud. ex A. Rich. in Ethiopia.
    Daba D; Kagnew B; Tefera B; Nemomissa S
    BMC Ecol Evol; 2023 Dec; 23(1):71. PubMed ID: 38057726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios.
    Bania JK; Deka JR; Hazarika A; Das AK; Nath AJ; Sileshi GW
    Sci Rep; 2023 Nov; 13(1):20221. PubMed ID: 37980365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Distribution and suitable habitats of ticks in the Yangtze River Delta urban agglomeration].
    Li ZQ; Li LH; Yin HJ; Wei ZX; Guo YH; Ma B; Zhang Y
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2021 Aug; 33(4):365-372. PubMed ID: 34505443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An iterative and targeted sampling design informed by habitat suitability models for detecting focal plant species over extensive areas.
    Wang O; Zachmann LJ; Sesnie SE; Olsson AD; Dickson BG
    PLoS One; 2014; 9(7):e101196. PubMed ID: 25019621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil carbon sequestration potential of cultivated lands and its controlling factors in China.
    Wang S; Xu L; Adhikari K; He N
    Sci Total Environ; 2023 Dec; 905():167292. PubMed ID: 37742981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.
    Nie X; Li Z; Huang J; Huang B; Xiao H; Zeng G
    Environ Manage; 2017 May; 59(5):816-825. PubMed ID: 28078391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochemical Analysis and Habitat Suitability Mapping of
    Momotomi F; Raju A; Wang D; Alsaadi DHM; Watanabe T
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.