These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38577671)

  • 1. Universal origin of glassy relaxation as recognized by configuration pattern matching.
    Yu HB; Gao L; Gao JQ; Samwer K
    Natl Sci Rev; 2024 May; 11(5):nwae091. PubMed ID: 38577671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Configuration correlation governs slow dynamics of supercooled metallic liquids.
    Hu YC; Li YW; Yang Y; Guan PF; Bai HY; Wang WH
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6375-6380. PubMed ID: 29866833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids.
    Hung JH; Patra TK; Meenakshisundaram V; Mangalara JH; Simmons DS
    Soft Matter; 2019 Feb; 15(6):1223-1242. PubMed ID: 30556082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids.
    Wang X; Xu WS; Zhang H; Douglas JF
    J Chem Phys; 2019 Nov; 151(18):184503. PubMed ID: 31731847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of Shear Transformations in the Relaxation of Supercooled Liquids.
    Lerbinger M; Barbot A; Vandembroucq D; Patinet S
    Phys Rev Lett; 2022 Nov; 129(19):195501. PubMed ID: 36399740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual information reveals multiple structural relaxation mechanisms in a model glass former.
    Dunleavy AJ; Wiesner K; Yamamoto R; Royall CP
    Nat Commun; 2015 Jan; 6():6089. PubMed ID: 25608791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural disorder in metallic glass-forming liquids.
    Pan SP; Feng SD; Wang LM; Qiao JW; Niu XF; Dong BS; Wang WM; Qin JY
    Sci Rep; 2016 Jun; 6():27708. PubMed ID: 27278113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous normal modes of glass-forming liquids during the athermal relaxation process of the steepest descent algorithm.
    Shimada M; Shiraishi K; Mizuno H; Ikeda A
    Soft Matter; 2024 Feb; 20(7):1583-1602. PubMed ID: 38273794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses.
    Yu HB; Richert R; Samwer K
    Sci Adv; 2017 Nov; 3(11):e1701577. PubMed ID: 29159283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Atomic-Scale Features of Low Temperature-Relaxation Dynamics in Metallic Glasses.
    Wang B; Shang BS; Gao XQ; Wang WH; Bai HY; Pan MX; Guan PF
    J Phys Chem Lett; 2016 Dec; 7(23):4945-4950. PubMed ID: 27934059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation dynamics of Pd-Ni-P metallic glass: decoupling of anelastic and viscous processes.
    Soriano D; Zhou H; Hilke S; Pineda E; Ruta B; Wilde G
    J Phys Condens Matter; 2021 Apr; 33(16):. PubMed ID: 33725689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growing length and time scales in glass-forming liquids.
    Karmakar S; Dasgupta C; Sastry S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3675-9. PubMed ID: 19234111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-scale relaxation dynamics and aging in a metallic glass probed by x-ray photon correlation spectroscopy.
    Ruta B; Chushkin Y; Monaco G; Cipelletti L; Pineda E; Bruna P; Giordano VM; Gonzalez-Silveira M
    Phys Rev Lett; 2012 Oct; 109(16):165701. PubMed ID: 23215091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids.
    Fraggedakis D; Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt.
    Wu ZW; Kob W; Wang WH; Xu L
    Nat Commun; 2018 Dec; 9(1):5334. PubMed ID: 30559382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glassy Interfacial Dynamics of Ni Nanoparticles: Part II Discrete Breathers as an Explanation of Two-Level Energy Fluctuations.
    Zhang H; Douglas JF
    Soft Matter; 2013 Jan; 9(4):1266-1280. PubMed ID: 23585770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a quantitative relation between structural relaxation and dynamic heterogeneity by vibrational dynamics in glass-forming liquids and polymers.
    Xia J; Guo H
    Soft Matter; 2021 Dec; 17(47):10753-10764. PubMed ID: 34792079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters.
    Appignanesi GA; Rodriguez Fris JA
    J Phys Condens Matter; 2009 May; 21(20):203103. PubMed ID: 21825509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.