These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38578041)

  • 1. A computational study of cell membrane damage and intracellular delivery in a cross-slot microchannel.
    Lu R; Yu P; Sui Y
    Soft Matter; 2024 May; 20(20):4057-4071. PubMed ID: 38578041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model for the transit of a cancer cell through a constricted microchannel.
    Wang Z; Lu R; Wang W; Tian FB; Feng JJ; Sui Y
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1129-1143. PubMed ID: 36854992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Phys Biol; 2007 Nov; 4(4):285-95. PubMed ID: 18185006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations.
    Porcaro C; Saeedipour M
    Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel.
    Takeishi N; Ito H; Kaneko M; Wada S
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30901883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann simulations of liquid CO
    Chen Y; Li Y; Valocchi AJ; Christensen KT
    J Contam Hydrol; 2018 May; 212():14-27. PubMed ID: 29054787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow.
    Omori T; Ishikawa T; Barthès-Biesel D; Salsac AV; Walter J; Imai Y; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041918. PubMed ID: 21599211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation Study on the Mass Transport Based on the Ciliated Dynamic System of the Respiratory Tract.
    Zhu PF; Li X; Li A; Liu Y; Chen DD; Xu YQ
    Comput Math Methods Med; 2019; 2019():6036248. PubMed ID: 31885683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parallel fluid-solid coupling model using
    Tan J; Sinno T; Diamond SL
    J Comput Sci; 2018 Mar; 25():89-100. PubMed ID: 30220942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of motion and deformation of healthy and sick red blood cell through a constricted vessel using hybrid lattice Boltzmann-immersed boundary method.
    Hassanzadeh A; Pourmahmoud N; Dadvand A
    Comput Methods Biomech Biomed Engin; 2017 May; 20(7):737-749. PubMed ID: 28387168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced viscoelastic focusing of particle in microchannel.
    Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model of bleb formation.
    Strychalski W; Guy RD
    Math Med Biol; 2013 Jun; 30(2):115-30. PubMed ID: 22294562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forces and stresses acting on fusion pore membrane during secretion.
    Tajparast M; Glavinović MI
    Biochim Biophys Acta; 2009 May; 1788(5):1009-23. PubMed ID: 19366587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Modelling of Microchannel Gas Flows in the Transition Flow Regime Using the Cascaded Lattice Boltzmann Method.
    Liu Q; Feng XB
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces.
    Huang JJ; Wu J; Huang H
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.