These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38578065)
41. Plant Beneficial Features and Application of Paraburkholderia sp. NhPBG1 Isolated from Pitcher of Nepenthes hamblack. Ravi A; Theresa M; Nandayipurath VVT; Rajan S; Khalid NK; Thankappanpillai AC; Krishnankutty RE Probiotics Antimicrob Proteins; 2021 Feb; 13(1):32-39. PubMed ID: 32537712 [TBL] [Abstract][Full Text] [Related]
42. Genome Mining and Evaluation of the Biocontrol Potential of Chlebek D; Pinski A; Żur J; Michalska J; Hupert-Kocurek K Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228091 [TBL] [Abstract][Full Text] [Related]
43. Apple endophyte community is shaped by tissue type, cultivar and site and has members with biocontrol potential against Neonectria ditissima. Liu J; Ridgway HJ; Jones EE J Appl Microbiol; 2020 Jun; 128(6):1735-1753. PubMed ID: 31981438 [TBL] [Abstract][Full Text] [Related]
44. Isolation and characterization of endophytic bacteria for controlling root rot disease of Chinese jujube. Wang X; Xiao C; Ji C; Liu Z; Song X; Liu Y; Li C; Yan D; Li H; Qin Y; Liu X J Appl Microbiol; 2021 Mar; 130(3):926-936. PubMed ID: 32777121 [TBL] [Abstract][Full Text] [Related]
45. Selecting Endophytes for Rhizome Production, Curcumin Content, Biocontrol Potential, and Antioxidant Activities of Turmeric (Curcuma longa). Sontsa-Donhoung AM; Bahdjolbe M; Hawaou ; Nwaga D Biomed Res Int; 2022; 2022():8321734. PubMed ID: 36051479 [TBL] [Abstract][Full Text] [Related]
46. Molecular characterization of plant growth promoting rhizobacteria that enhance peroxidase and phenylalanine ammonia-lyase activities in chile (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.). Sharma A; Pathak A; Sahgal M; Meyer JM; Wray V; Johri BN Arch Microbiol; 2007 Nov; 188(5):483-94. PubMed ID: 17593351 [TBL] [Abstract][Full Text] [Related]
47. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Morales-Cedeño LR; Orozco-Mosqueda MDC; Loeza-Lara PD; Parra-Cota FI; de Los Santos-Villalobos S; Santoyo G Microbiol Res; 2021 Jan; 242():126612. PubMed ID: 33059112 [TBL] [Abstract][Full Text] [Related]
48. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). Verma SK; White JF J Appl Microbiol; 2018 Mar; 124(3):764-778. PubMed ID: 29253319 [TBL] [Abstract][Full Text] [Related]
49. Antagonistic potential of rhizobacterial isolates against fungal pathogens causing rhizome rot in turmeric. Kharshandi F; Kayang H Arch Microbiol; 2023 May; 205(6):221. PubMed ID: 37149500 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Dowarah B; Agarwal H; Krishnatreya DB; Sharma PL; Kalita N; Agarwala N Microbiol Res; 2021 Jul; 248():126751. PubMed ID: 33839507 [TBL] [Abstract][Full Text] [Related]
51. Decoding the Plant Growth Promotion and Antagonistic Potential of Bacterial Endophytes From Gupta S; Pandey S; Sharma S Front Plant Sci; 2022; 13():813686. PubMed ID: 35237287 [TBL] [Abstract][Full Text] [Related]
52. Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1. Seo DJ; Nguyen DM; Song YS; Jung WJ J Microbiol Biotechnol; 2012 Mar; 22(3):407-15. PubMed ID: 22450798 [TBL] [Abstract][Full Text] [Related]
53. Molecular characterization of ZzR1 resistance gene from Zingiber zerumbet with potential for imparting Pythium aphanidermatum resistance in ginger. Nair RA; Thomas G Gene; 2013 Mar; 516(1):58-65. PubMed ID: 23262347 [TBL] [Abstract][Full Text] [Related]
54. First Report of Root Rot Caused by Pythium myriotylum on Sesame in China. Jia M; Ni Y; Liu X; Zhao H; Zhao X; He B; Zhang C; Liu H Plant Dis; 2023 Apr; ():. PubMed ID: 37026626 [TBL] [Abstract][Full Text] [Related]
55. Intraspecific strains of Pythium aphanidermatum induced disease resistance in ginger and response of host proteins. Ghosh R; Datta M; Purkayastha RP Indian J Exp Biol; 2006 Jan; 44(1):68-72. PubMed ID: 16430094 [TBL] [Abstract][Full Text] [Related]
56. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Kushwaha P; Kashyap PL; Srivastava AK; Tiwari RK Braz J Microbiol; 2020 Mar; 51(1):229-241. PubMed ID: 31642002 [TBL] [Abstract][Full Text] [Related]
58. Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Munakata Y; Gavira C; Genestier J; Bourgaud F; Hehn A; Slezack-Deschaumes S Microbiol Res; 2021 Feb; 243():126650. PubMed ID: 33302220 [TBL] [Abstract][Full Text] [Related]
59. Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy. Yuan Y; Gao M Sci Rep; 2015 May; 5():10259. PubMed ID: 25989507 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of Tunisian wheat endophytes as plant growth promoting bacteria and biological control agents against Fusarium culmorum. Saadaoui M; Faize M; Rifai A; Tayeb K; Omri Ben Youssef N; Kharrat M; Roeckel-Drevet P; Chaar H; Venisse JS PLoS One; 2024; 19(5):e0300791. PubMed ID: 38758965 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]