These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38578127)

  • 1. Collective effects of rising average temperatures and heat events on oviparous embryos.
    Ma L; Wu DY; Wang Y; Hall JM; Mi CR; Xie HX; Tao WJ; Hou C; Cheng KM; Zhang YP; Wang JC; Lu HL; Du WG; Sun BJ
    Conserv Biol; 2024 Aug; 38(4):e14266. PubMed ID: 38578127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity.
    Rodríguez-Díaz T; Braña F
    J Evol Biol; 2012 Sep; 25(9):1877-87. PubMed ID: 22862292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat tolerance of reptile embryos: Current knowledge, methodological considerations, and future directions.
    Hall JM; Sun BJ
    J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):45-58. PubMed ID: 32757379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress.
    Mi C; Ma L; Wang Y; Wu D; Du W; Sun B
    Proc Biol Sci; 2022 Aug; 289(1980):20221074. PubMed ID: 35946157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal sensitivity of lizard embryos indicates a mismatch between oxygen supply and demand at near-lethal temperatures.
    Hall JM; Warner DA
    J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):72-85. PubMed ID: 32297716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock protein expression enhances heat tolerance of reptile embryos.
    Gao J; Zhang W; Dang W; Mou Y; Gao Y; Sun BJ; Du WG
    Proc Biol Sci; 2014 Sep; 281(1791):20141135. PubMed ID: 25080340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal tolerance in the urban heat island: thermal sensitivity varies ontogenetically and differs between embryos of two sympatric ectotherms.
    Hall JM; Warner DA
    J Exp Biol; 2019 Oct; 222(Pt 19):. PubMed ID: 31527177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooler performance breadth in a viviparous skink relative to its oviparous congener.
    Landry Yuan F; Pickett EJ; Bonebrake TC
    J Therm Biol; 2016 Oct; 61():106-114. PubMed ID: 27712651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal spikes from the urban heat island increase mortality and alter physiology of lizard embryos.
    Hall JM; Warner DA
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30021761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B; Murray BR; Webb JK
    J Exp Biol; 2017 Jun; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving the life cycle alters expected impacts of climate change.
    Levy O; Buckley LB; Keitt TH; Smith CD; Boateng KO; Kumar DS; Angilletta MJ
    Proc Biol Sci; 2015 Aug; 282(1813):20150837. PubMed ID: 26290072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are viviparous lizards more vulnerable to climate warming because they have evolved reduced body temperature and heat tolerance?
    Wang Z; Ma L; Shao M; Ji X
    Oecologia; 2017 Dec; 185(4):573-582. PubMed ID: 29018950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternal warming influences reproductive frequency, but not hatchling phenotypes in a multiple-clutched oviparous lizard.
    Lu HL; Wang J; Xu DD; Dang W
    J Therm Biol; 2018 May; 74():303-310. PubMed ID: 29801642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients.
    Bozinovic F; Orellana MJ; Martel SI; Bogdanovich JM
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():46-50. PubMed ID: 25152532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global effects of extreme temperatures on wild bumblebees.
    Martinet B; Dellicour S; Ghisbain G; Przybyla K; Zambra E; Lecocq T; Boustani M; Baghirov R; Michez D; Rasmont P
    Conserv Biol; 2021 Oct; 35(5):1507-1518. PubMed ID: 33319368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal stressors during embryo incubation have limited ontogenic carryover effects in brook trout.
    Lechner ER; Stewart EMC; Frasca VR; Jeffries KM; Wilson CC; Raby GD
    J Therm Biol; 2024 May; 122():103880. PubMed ID: 38850621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal tolerance patterns across latitude and elevation.
    Sunday J; Bennett JM; Calosi P; Clusella-Trullas S; Gravel S; Hargreaves AL; Leiva FP; Verberk WCEP; Olalla-Tárraga MÁ; Morales-Castilla I
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20190036. PubMed ID: 31203755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic and post-embryonic responses to high-elevation hypoxia in a low-elevation lizard.
    Li X; Wu P; Ma L; Huebner C; Sun B; Li S
    Integr Zool; 2020 Jul; 15(4):338-348. PubMed ID: 32297704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobile and mobile life-history stages have different thermal physiologies in a lizard.
    Telemeco RS
    Physiol Biochem Zool; 2014; 87(2):203-15. PubMed ID: 24642538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carryover effects of embryonic incubation temperature on subsequent growth and thermal tolerance in white sturgeon.
    Cheung K; Nelson-Flower MJ; McAdam S; Brauner CJ
    J Therm Biol; 2024 Apr; 121():103860. PubMed ID: 38754202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.