BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 38578457)

  • 21. Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice.
    Zhang Y; Wang Y; Feng X; Zhang S; Xu X; Li L; Niu S; Bo Y; Wang C; Li Z; Xia G; Zhang H
    Nat Commun; 2021 May; 12(1):2523. PubMed ID: 33953177
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Liu L; Wang H; Xu GL; Liu L
    Front Cell Dev Biol; 2021; 9():644135. PubMed ID: 33834024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging.
    Kordowitzki P; Haghani A; Zoller JA; Li CZ; Raj K; Spangler ML; Horvath S
    Aging Cell; 2021 May; 20(5):e13349. PubMed ID: 33797841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes.
    Sha QQ; Zhu YZ; Xiang Y; Yu JL; Fan XY; Li YC; Wu YW; Shen L; Fan HY
    Nucleic Acids Res; 2021 Mar; 49(5):2569-2582. PubMed ID: 33621320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of Tet2 in meiosis, fertility and reproductive aging.
    Wang H; Liu L; Gou M; Huang G; Tian C; Yang J; Wang H; Xu Q; Xu GL; Liu L
    Protein Cell; 2021 Jul; 12(7):578-585. PubMed ID: 33216286
    [No Abstract]   [Full Text] [Related]  

  • 26. Implications of Nonphysiological Ovarian Primordial Follicle Activation for Fertility Preservation.
    Grosbois J; Devos M; Demeestere I
    Endocr Rev; 2020 Dec; 41(6):. PubMed ID: 32761180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies.
    Sandweiss AJ; Brandt VL; Zoghbi HY
    Lancet Neurol; 2020 Aug; 19(8):689-698. PubMed ID: 32702338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MeCP2 links heterochromatin condensates and neurodevelopmental disease.
    Li CH; Coffey EL; Dall'Agnese A; Hannett NM; Tang X; Henninger JE; Platt JM; Oksuz O; Zamudio AV; Afeyan LK; Schuijers J; Liu XS; Markoulaki S; Lungjangwa T; LeRoy G; Svoboda DS; Wogram E; Lee TI; Jaenisch R; Young RA
    Nature; 2020 Oct; 586(7829):440-444. PubMed ID: 32698189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maternal ageing causes changes in DNA methylation and gene expression profiles in mouse oocytes.
    Hou G; Sun QY
    Zygote; 2020 Jul; ():1-7. PubMed ID: 32635949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MeCP2 regulates gene expression through recognition of H3K27me3.
    Lee W; Kim J; Yun JM; Ohn T; Gong Q
    Nat Commun; 2020 Jun; 11(1):3140. PubMed ID: 32561780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin.
    Wang L; Hu M; Zuo MQ; Zhao J; Wu D; Huang L; Wen Y; Li Y; Chen P; Bao X; Dong MQ; Li G; Li P
    Cell Res; 2020 May; 30(5):393-407. PubMed ID: 32111972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes.
    Boxer LD; Renthal W; Greben AW; Whitwam T; Silberfeld A; Stroud H; Li E; Yang MG; Kinde B; Griffith EC; Bonev B; Greenberg ME
    Mol Cell; 2020 Jan; 77(2):294-309.e9. PubMed ID: 31784358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role and mechanisms of DNA methylation in the oocyte.
    Sendžikaitė G; Kelsey G
    Essays Biochem; 2019 Dec; 63(6):691-705. PubMed ID: 31782490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation.
    Rong Y; Ji SY; Zhu YZ; Wu YW; Shen L; Fan HY
    Nucleic Acids Res; 2019 Dec; 47(21):11387-11402. PubMed ID: 31598710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The CRL4-DCAF13 ubiquitin E3 ligase supports oocyte meiotic resumption by targeting PTEN degradation.
    Zhang J; Zhang YL; Zhao LW; Pi SB; Zhang SY; Tong C; Fan HY
    Cell Mol Life Sci; 2020 Jun; 77(11):2181-2197. PubMed ID: 31492966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development.
    Xu Q; Xiang Y; Wang Q; Wang L; Brind'Amour J; Bogutz AB; Zhang Y; Zhang B; Yu G; Xia W; Du Z; Huang C; Ma J; Zheng H; Li Y; Liu C; Walker CL; Jonasch E; Lefebvre L; Wu M; Lorincz MC; Li W; Li L; Xie W
    Nat Genet; 2019 May; 51(5):844-856. PubMed ID: 31040401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maternal DCAF13 Regulates Chromatin Tightness to Contribute to Embryonic Development.
    Liu Y; Zhao LW; Shen JL; Fan HY; Jin Y
    Sci Rep; 2019 Apr; 9(1):6278. PubMed ID: 31000741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An integrated package for bisulfite DNA methylation data analysis with Indel-sensitive mapping.
    Zhou Q; Lim JQ; Sung WK; Li G
    BMC Bioinformatics; 2019 Jan; 20(1):47. PubMed ID: 30669962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes.
    Gu C; Liu S; Wu Q; Zhang L; Guo F
    Cell Res; 2019 Feb; 29(2):110-123. PubMed ID: 30560925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions.
    Zhang Y; Yan Z; Qin Q; Nisenblat V; Chang HM; Yu Y; Wang T; Lu C; Yang M; Yang S; Yao Y; Zhu X; Xia X; Dang Y; Ren Y; Yuan P; Li R; Liu P; Guo H; Han J; He H; Zhang K; Wang Y; Wu Y; Li M; Qiao J; Yan J; Yan L
    Mol Cell; 2018 Dec; 72(6):1021-1034.e4. PubMed ID: 30472193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.