These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38578514)

  • 1. Improvement of cell growth in green algae Chlamydomonas reinhardtii through co-cultivation with yeast Saccharomyces cerevisiae.
    Karitani Y; Yamada R; Matsumoto T; Ogino H
    Biotechnol Lett; 2024 Jun; 46(3):431-441. PubMed ID: 38578514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV mutagenesis improves growth potential of green algae in a green algae-yeast co-culture system.
    Karitani Y; Yamada R; Matsumoto T; Ogino H
    Arch Microbiol; 2024 Jan; 206(2):61. PubMed ID: 38216809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting cell growth and characterizing partial symbiotic relationships in the co-cultivation of green alga Chlamydomonas reinhardtii and Escherichia coli.
    Yamada R; Yokota M; Matsumoto T; Hankamer B; Ogino H
    Biotechnol J; 2023 Feb; 18(2):e2200099. PubMed ID: 36479591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO
    Zhang Y; Gu Z; Ren Y; Wang L; Zhang J; Liang C; Tong S; Wang Y; Xu D; Zhang X; Ye N
    Mar Biotechnol (NY); 2021 Apr; 23(2):255-275. PubMed ID: 33689052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO
    Banerjee S; Ray A; Das D
    Sci Total Environ; 2021 Mar; 762():143080. PubMed ID: 33162147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses.
    Yamano T; Fukuzawa H
    J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of ferrous iron in Chlamydomonas reinhardtii. Influence of CO2 and anaerobic induction of the reversible hydrogenase.
    Semin BK; Davletshina LN; Novakova AA; Kiseleva TY; Lanchinskaya VY; Aleksandrov AY; Seifulina N; Ivanov II; Seibert M; Rubin AB
    Plant Physiol; 2003 Apr; 131(4):1756-64. PubMed ID: 12692334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum improved H
    Xu L; Cheng X; Wu S; Wang Q
    Biotechnol Lett; 2017 May; 39(5):731-738. PubMed ID: 28432498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii.
    Gao H; Wang Y; Fei X; Wright DA; Spalding MH
    Plant J; 2015 Apr; 82(1):1-11. PubMed ID: 25660294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LCIB functions as a carbonic anhydrase: evidence from yeast and Arabidopsis carbonic anhydrase knockout mutants.
    Kasili RW; Rai AK; Moroney JV
    Photosynth Res; 2023 May; 156(2):193-204. PubMed ID: 36856938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.
    Kong QX; Li L; Martinez B; Chen P; Ruan R
    Appl Biochem Biotechnol; 2010 Jan; 160(1):9-18. PubMed ID: 19507059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation and genetic intervention of CO
    Mallikarjuna K; Narendra K; Ragalatha R; Rao BJ
    J Biosci; 2020; 45():. PubMed ID: 33051409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of LncRNAs associated with photosynthesis-and pigment synthesis-related genes to green light in Chlamydomonas reinhardtii.
    Liu M; Wang L; Yu Q; Song J; Zhu L; Jia KH; Qin X
    Photosynth Res; 2024 Aug; 161(1-2):65-78. PubMed ID: 38108929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies to Study Dark Growth Deficient or Slower Mutants in Chlamydomonas reinhardtii.
    Yang H; Han F; Wang Y; Yang W; Tu W
    Methods Mol Biol; 2021; 2297():125-140. PubMed ID: 33656676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO
    La A; Perré P; Taidi B
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):731-745. PubMed ID: 30421109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced carbon capture and utilization (CCU) using heterologous carbonic anhydrase in Chlamydomonas reinhardtii for lutein and lipid production.
    Lin JY; Sri Wahyu Effendi S; Ng IS
    Bioresour Technol; 2022 May; 351():127009. PubMed ID: 35304253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii.
    Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H
    Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii.
    Boyle NR; Morgan JA
    BMC Syst Biol; 2009 Jan; 3():4. PubMed ID: 19128495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO
    Kono A; Spalding MH
    Plant J; 2020 Jun; 102(6):1127-1141. PubMed ID: 32248584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO2 supply, but not thylakoid operating efficiency.
    Caspari OD; Meyer MT; Tolleter D; Wittkopp TM; Cunniffe NJ; Lawson T; Grossman AR; Griffiths H
    J Exp Bot; 2017 Jun; 68(14):3903-3913. PubMed ID: 28911055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.