These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38578665)

  • 1. Influence of Iron Substitution and Solution Composition on Brucite Carbonation.
    Vessey CJ; Raudsepp MJ; Patel AS; Wilson S; Harrison AL; Chen N; Chen W
    Environ Sci Technol; 2024 May; 58(18):7802-7813. PubMed ID: 38578665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated carbonation of brucite in mine tailings for carbon sequestration.
    Harrison AL; Power IM; Dipple GM
    Environ Sci Technol; 2013 Jan; 47(1):126-34. PubMed ID: 22770473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonation, Cementation, and Stabilization of Ultramafic Mine Tailings.
    Power IM; Paulo C; Long H; Lockhart JA; Stubbs AR; French D; Caldwell R
    Environ Sci Technol; 2021 Jul; 55(14):10056-10066. PubMed ID: 34236189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Sequestration in Biogenic Magnesite and Other Magnesium Carbonate Minerals.
    McCutcheon J; Power IM; Shuster J; Harrison AL; Dipple GM; Southam G
    Environ Sci Technol; 2019 Mar; 53(6):3225-3237. PubMed ID: 30786208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems?
    Templeton AS; Ellison ET
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180423. PubMed ID: 31902337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating Mineral Carbonation Using Carbonic Anhydrase.
    Power IM; Harrison AL; Dipple GM
    Environ Sci Technol; 2016 Mar; 50(5):2610-8. PubMed ID: 26829491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dioxide sequestration of iron ore mining waste under low-reaction condition of a direct mineral carbonation process.
    Kusin FM; Hasan SNMS; Molahid VLM; Yusuff FM; Jusop S
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22188-22210. PubMed ID: 36282383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon sequestration kinetic and storage capacity of ultramafic mining waste.
    Pronost J; Beaudoin G; Tremblay J; Larachi F; Duchesne J; Hébert R; Constantin M
    Environ Sci Technol; 2011 Nov; 45(21):9413-20. PubMed ID: 21919443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide.
    Loring JS; Thompson CJ; Zhang C; Wang Z; Schaef HT; Rosso KM
    J Phys Chem A; 2012 May; 116(19):4768-77. PubMed ID: 22533532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical and chemical characterization of mining waste and utilization for carbon sequestration through mineral carbonation.
    Molahid VLM; Kusin FM; Syed Hasan SNM
    Environ Geochem Health; 2023 Jul; 45(7):4439-4460. PubMed ID: 36811700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct nanoscale observations of CO2 sequestration during brucite [Mg(OH)2] dissolution.
    Hövelmann J; Putnis CV; Ruiz-Agudo E; Austrheim H
    Environ Sci Technol; 2012 May; 46(9):5253-60. PubMed ID: 22500652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous carbonation of natural brucite: relevance to CO2 sequestration.
    Zhao L; Sang L; Chen J; Ji J; Teng HH
    Environ Sci Technol; 2010 Jan; 44(1):406-11. PubMed ID: 19947626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous mineral carbonation of ultramafic material: a pre-requisite to integrate into mineral extraction and tailings management operation.
    Puthiya Veetil SK; Hitch M
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29096-29109. PubMed ID: 33550555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO
    Zhang X; Lea AS; Chaka AM; Loring JS; Mergelsberg ST; Nakouzi E; Qafoku O; De Yoreo JJ; Schaef HT; Rosso KM
    Nat Mater; 2022 Mar; 21(3):345-351. PubMed ID: 34845364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites.
    McCutcheon J; Wilson S; Southam G
    Environ Sci Technol; 2016 Feb; 50(3):1419-27. PubMed ID: 26720600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation and Simplistic Geochemical Modeling of CO₂ Mineral Carbonation Using the Mount Tawai Peridotite.
    Rahmani O; Highfield J; Junin R; Tyrer M; Pour AB
    Molecules; 2016 Mar; 21(3):353. PubMed ID: 26999082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals.
    McCutcheon J; Power IM; Harrison AL; Dipple GM; Southam G
    Environ Sci Technol; 2014 Aug; 48(16):9142-51. PubMed ID: 25072950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced greenhouse gas emissions from particulate organic matter degradation in iron-enriched sediments.
    Kommana G; Hupfer M; Woodhouse JN; Grossart HP; Goldhammer T
    Environ Sci Process Impacts; 2024 Jul; 26(7):1227-1244. PubMed ID: 38910491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada.
    Power IM; Wilson S; Thom JM; Dipple GM; Southam G
    Geochem Trans; 2007 Dec; 8():13. PubMed ID: 18053262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.