BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38578852)

  • 1. Frequency-Domain Robust PCA for Real-Time Monitoring of HIFU Treatment.
    Yang K; Li Q; Xu J; Tang MX; Wang Z; Tsui PH; Zhou X
    IEEE Trans Med Imaging; 2024 Apr; PP():. PubMed ID: 38578852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing the HIFU interference in ultrasound guiding images with a diffusion-based deep learning model.
    Cai D; Yang K; Liu X; Xu J; Ran Y; Xu Y; Zhou X
    Comput Methods Programs Biomed; 2024 Jun; 254():108304. PubMed ID: 38954917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressing HIFU interference in ultrasound images using 1D U-Net-based neural networks.
    Yang K; Li Q; Liu H; Zeng Q; Cai D; Xu J; Zhou Y; Tsui PH; Zhou X
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38382109
    [No Abstract]   [Full Text] [Related]  

  • 4. Ultrasound Monitoring of Simultaneous high-intensity focused ultrasound (HIFU) therapy using minimum-peak-sidelobe coded excitation.
    Shen CC; Wu NH
    Ultrasonics; 2024 Mar; 138():107224. PubMed ID: 38134515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Golay-Encoded Ultrasound Monitoring of Simultaneous High-Intensity Focused Ultrasound Treatment: A Phantom Study.
    Shen CC; Lin RC; Wu NH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1370-1381. PubMed ID: 35192463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.
    Jeong JS; Cannata JM; Shung KK
    Phys Med Biol; 2010 Apr; 55(7):1889-902. PubMed ID: 20224162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating dynamic changes of tissue attenuation coefficient during high-intensity focused ultrasound treatment.
    Rahimian S; Tavakkoli J
    J Ther Ultrasound; 2013; 1():14. PubMed ID: 25516802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive singular value decomposition filtering of high-intensity focused ultrasound interference enables real-time ultrasound-guided therapy.
    Lee H; Chung E; Yoon H; Song TK
    Ultrasonography; 2023 Apr; 42(2):343-353. PubMed ID: 36935600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Intensity Focused Ultrasound Thermal Lesion Detection Using Entropy Imaging of Ultrasound Radio Frequency Signal Time Series.
    Monfared MM; Behnam H; Rangraz P; Tavakkoli J
    J Med Ultrasound; 2018; 26(1):24-30. PubMed ID: 30065509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method.
    Rangraz P; Behnam H; Sobhebidari P; Tavakkoli J
    Ultrasound Med Biol; 2014 Dec; 40(12):2841-50. PubMed ID: 25438863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harmonic Motion Imaging-Guided Focused Ultrasound Ablation: Comparison of Three Focused Ultrasound Interference Filtering Methods.
    Li XJ; Hossain MM; Lee SA; Saharkhiz N; Konofagou E
    Ultrasound Med Biol; 2024 Jan; 50(1):119-127. PubMed ID: 37872031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment.
    Zhang S; Wan M; Zhong H; Xu C; Liao Z; Liu H; Wang S
    Ultrasound Med Biol; 2009 Nov; 35(11):1828-44. PubMed ID: 19716225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).
    Han Y; Hou GY; Wang S; Konofagou E
    Phys Med Biol; 2015 Aug; 60(15):5911-24. PubMed ID: 26184846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Intensity Focused Ultrasound Lesion Detection Using Adaptive Compressive Sensing Based on Empirical Mode Decomposition.
    Ghasemifard H; Behnam H; Tavakkoli J
    J Med Signals Sens; 2019; 9(1):24-32. PubMed ID: 30967987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of gaps between high-intensity focused ultrasound (HIFU)-induced lesions using transient axial shear strain elastograms.
    Liu C; Zhou Y
    Med Phys; 2018 Jul; ():. PubMed ID: 29963699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An acoustic backscatter-based method for localization of lesions induced by high-intensity focused ultrasound.
    Zheng X; Vaezy S
    Ultrasound Med Biol; 2010 Apr; 36(4):610-22. PubMed ID: 20211516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A region-based segmentation method for ultrasound images in HIFU therapy.
    Zhang D; Liu Y; Yang Y; Xu M; Yan Y; Qin Q
    Med Phys; 2016 Jun; 43(6):2975-2989. PubMed ID: 27277046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the acoustic interference pattern to locate the focus of a high-intensity focused ultrasound (HIFU) transducer.
    Wu CC; Chen CN; Ho MC; Chen WS; Lee PH
    Ultrasound Med Biol; 2008 Jan; 34(1):137-46. PubMed ID: 17720300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Photoacoustic Thermometry Combined With Clinical Ultrasound Imaging and High-Intensity Focused Ultrasound.
    Kim J; Choi W; Park EY; Kang Y; Lee KJ; Kim HH; Kim WJ; Kim C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3330-3338. PubMed ID: 30869607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of feasibility of noise suppression method for cavitation-enhanced high-intensity focused ultrasound treatment.
    Takagi R; Koseki Y; Yoshizawa S; Umemura SI
    Ultrasonics; 2021 Jul; 114():106394. PubMed ID: 33657511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.