These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38578862)

  • 1. MAMLCDA: A Meta-Learning Model for Predicting circRNA-Disease Association Based on MAML Combined With CNN.
    Tian Y; Zou Q; Wang C; Jia C
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4325-4335. PubMed ID: 38578862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DCDA: CircRNA-Disease Association Prediction with Feed-Forward Neural Network and Deep Autoencoder.
    Turgut H; Turanli B; Boz B
    Interdiscip Sci; 2024 Mar; 16(1):91-103. PubMed ID: 37978116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification.
    Li G; Li Y; Liang C; Luo J
    Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular RNAs and complex diseases: from experimental results to computational models.
    Wang CC; Han CD; Zhao Q; Chen X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34329377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCirc: random forest-based plant circRNA identification software.
    Yin S; Tian X; Zhang J; Sun P; Li G
    BMC Bioinformatics; 2021 Jan; 22(1):10. PubMed ID: 33407069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network.
    Deepthi K; Jereesh AS
    Gene; 2020 Dec; 762():145040. PubMed ID: 32777520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THGNCDA: circRNA-disease association prediction based on triple heterogeneous graph network.
    Guo Y; Yi M
    Brief Funct Genomics; 2024 Jul; 23(4):384-394. PubMed ID: 37738503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning.
    Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization.
    Qiao LJ; Gao Z; Ji CM; Liu ZH; Zheng CH; Wang YT
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3154-3162. PubMed ID: 37018084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation.
    Peng L; Yang C; Huang L; Chen X; Fu X; Liu W
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.