These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38578862)

  • 21. SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations.
    Wang L; Yan X; You ZH; Zhou X; Li HY; Huang YA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33734296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MLNGCF: circRNA-disease associations prediction with multilayer attention neural graph-based collaborative filtering.
    Wu Q; Deng Z; Zhang W; Pan X; Choi KS; Zuo Y; Shen HB; Yu DJ
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37561093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational model of circRNA-associated diseases based on a graph neural network: prediction and case studies for follow-up experimental validation.
    Niu M; Wang C; Zhang Z; Zou Q
    BMC Biol; 2024 Jan; 22(1):24. PubMed ID: 38281919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations.
    Wang W; Han P; Li Z; Nie R; Wang K; Wang L; Liao H
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):289-300. PubMed ID: 38231821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods.
    Zeng X; Zhong Y; Lin W; Zou Q
    Brief Bioinform; 2020 Jul; 21(4):1425-1436. PubMed ID: 31612203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of circRNA-disease associations via multi-model fusion and ensemble learning.
    Yang J; Lei X; Zhang F
    J Cell Mol Med; 2024 Apr; 28(7):e18180. PubMed ID: 38506066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A few-shot disease diagnosis decision making model based on meta-learning for general practice.
    Liu Q; Tian Y; Zhou T; Lyu K; Xin R; Shang Y; Liu Y; Ren J; Li J
    Artif Intell Med; 2024 Jan; 147():102718. PubMed ID: 38184346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks.
    Qian Y; Zheng J; Jiang Y; Li S; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A machine learning framework based on multi-source feature fusion for circRNA-disease association prediction.
    Wang L; Wong L; Li Z; Huang Y; Su X; Zhao B; You Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization.
    Wei H; Liu B
    Brief Bioinform; 2020 Jul; 21(4):1356-1367. PubMed ID: 31197324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BiLSTM- and CNN-Based m6A Modification Prediction Model for circRNAs.
    Yuan Y; Tang X; Li H; Lang X; Song Y; Yang Y; Zhou Z
    Molecules; 2024 May; 29(11):. PubMed ID: 38893304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations.
    Guo LX; Wang L; You ZH; Yu CQ; Hu ML; Zhao BW; Li Y
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.