These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38578874)
1. CT-based intratumoral and peritumoral deep transfer learning features prediction of lymph node metastasis in non-small cell lung cancer. Lu T; Ma J; Zou J; Jiang C; Li Y; Han J J Xray Sci Technol; 2024; 32(3):597-609. PubMed ID: 38578874 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study. Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702 [TBL] [Abstract][Full Text] [Related]
3. The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma. Yuan H; Xu X; Tu S; Chen B; Wei Y; Ma Y BMC Gastroenterol; 2022 Nov; 22(1):463. PubMed ID: 36384504 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580 [TBL] [Abstract][Full Text] [Related]
5. Dual-Region Computed Tomography Radiomics-Based Machine Learning Predicts Subcarinal Lymph Node Metastasis in Patients with Non-small Cell Lung Cancer. Yan HJ; Zhao JS; Zuo HD; Zhang JJ; Deng ZQ; Yang C; Luo X; Wan JX; Zheng XY; Chen WY; Li SP; Tian D Ann Surg Oncol; 2024 Aug; 31(8):5011-5020. PubMed ID: 38520581 [TBL] [Abstract][Full Text] [Related]
6. Ultrasound-based radiomics machine learning models for diagnosing cervical lymph node metastasis in patients with non-small cell lung cancer: a multicentre study. Deng Z; Liu X; Wu R; Yan H; Gou L; Hu W; Wan J; Song C; Chen J; Ma D; Zhou H; Tian D BMC Cancer; 2024 Apr; 24(1):536. PubMed ID: 38678211 [TBL] [Abstract][Full Text] [Related]
7. A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma. Xie H; Song C; Jian L; Guo Y; Li M; Luo J; Li Q; Tan T BMC Med Imaging; 2024 May; 24(1):121. PubMed ID: 38789936 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model. Ma X; Xia L; Chen J; Wan W; Zhou W Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691 [TBL] [Abstract][Full Text] [Related]
9. Developing a primary tumor and lymph node 18F-FDG PET/CT-clinical (TLPC) model to predict lymph node metastasis of resectable T2-4 NSCLC. Wang M; Liu L; Dai Q; Jin M; Huang G J Cancer Res Clin Oncol; 2023 Jan; 149(1):247-261. PubMed ID: 36565319 [TBL] [Abstract][Full Text] [Related]
10. Development of a multi-modal learning-based lymph node metastasis prediction model for lung cancer. Park J; Kim S; Lim JH; Kim CH; You S; Choi JS; Lim JH; Chang JW; Park D; Lee MW; Lee BJ; Shin SC; Cheon YI; Park IS; Han SH; Youn D; Lee HS; Heo J Clin Imaging; 2024 Oct; 114():110254. PubMed ID: 39153380 [TBL] [Abstract][Full Text] [Related]
11. Prediction of programmed death-1 expression status in non-small cell lung cancer based on intratumoural and peritumoral computed tomography (CT) radiomics nomogram. Tian Q; Jia JY; Qin C; Zhou H; Zhou SY; Qin YH; Wu YY; Shi J; Duan SF; Feng F Clin Radiol; 2024 Sep; 79(9):e1089-e1100. PubMed ID: 38876960 [TBL] [Abstract][Full Text] [Related]
12. An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning. Ma Y; Li Q Cancer Radiother; 2023 Dec; 27(8):705-711. PubMed ID: 37932182 [TBL] [Abstract][Full Text] [Related]
13. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Wang X; Zhao X; Li Q; Xia W; Peng Z; Zhang R; Li Q; Jian J; Wang W; Tang Y; Liu S; Gao X Eur Radiol; 2019 Nov; 29(11):6049-6058. PubMed ID: 30887209 [TBL] [Abstract][Full Text] [Related]
14. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram. Liu Y; Li X; Zhu L; Zhao Z; Wang T; Zhang X; Cai B; Li L; Ma M; Ma X; Ming J Contrast Media Mol Imaging; 2022; 2022():6729473. PubMed ID: 36051932 [TBL] [Abstract][Full Text] [Related]
15. [Application of a Radiomics Model for Preding Lymph Node Metastasis in Non-small Cell Lung Cancer]. Zhu J; Xu WG; Xiao H; Zhou Y Sichuan Da Xue Xue Bao Yi Xue Ban; 2019 May; 50(3):373-378. PubMed ID: 31631606 [TBL] [Abstract][Full Text] [Related]
16. Intratumoral and peritumoral CT-based radiomics strategy reveals distinct subtypes of non-small-cell lung cancer. Tang X; Huang H; Du P; Wang L; Yin H; Xu X J Cancer Res Clin Oncol; 2022 Sep; 148(9):2247-2260. PubMed ID: 35430688 [TBL] [Abstract][Full Text] [Related]
17. Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study. Lin F; Li Q; Wang Z; Shi Y; Ma H; Zhang H; Zhang K; Yang P; Zhang R; Duan S; Gu Y; Mao N; Xie H Br J Radiol; 2023 Mar; 96(1143):20220068. PubMed ID: 36542866 [TBL] [Abstract][Full Text] [Related]
18. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method. Zhang H; Liao M; Guo Q; Chen J; Wang S; Liu S; Xiao F Med Phys; 2023 Apr; 50(4):2049-2060. PubMed ID: 36563341 [TBL] [Abstract][Full Text] [Related]
19. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Li J; Dong D; Fang M; Wang R; Tian J; Li H; Gao J Eur Radiol; 2020 Apr; 30(4):2324-2333. PubMed ID: 31953668 [TBL] [Abstract][Full Text] [Related]
20. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]