These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38578877)

  • 1. 3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility.
    Slavin BV; Mirsky NA; Stauber ZM; Nayak VV; Smay JE; Rivera CF; Mijares DQ; Coelho PG; Cronstein BN; Tovar N; Witek L
    Biomed Mater Eng; 2024; 35(4):365-375. PubMed ID: 38578877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds.
    Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T
    J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks.
    Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG
    Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/
    Qianjuan Z; Rong S; Shengxi L; Xuanhao L; Bin L; Fuxiang S
    Biomed Mater; 2024 Sep; 19(6):. PubMed ID: 39208855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research on sintering process of tricalcium phosphate bone tissue engineering scaffold based on three-dimensional printing].
    Man X; Suo H; Liu J; Xu M; Wang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):112-118. PubMed ID: 32096384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-engineered Maxillofacial Skeletal Defect Reconstruction by 3D Printed Beta-tricalcium phosphate Scaffold Tethered with Growth Factors and Fibrin Glue Implanted Autologous Bone Marrow-Derived Mesenchymal Stem Cells.
    Nair MA; Shaik KV; Kokkiligadda A; Gorrela H
    J Med Life; 2020; 13(3):418-425. PubMed ID: 33072218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds.
    Bose S; Tarafder S; Bandyopadhyay A
    Ann Biomed Eng; 2017 Jan; 45(1):261-272. PubMed ID: 27287311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations.
    Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.
    Lu L; Zhang Q; Wootton D; Chiou R; Li D; Lu B; Lelkes P; Zhou J
    J Mater Sci Mater Med; 2012 Sep; 23(9):2217-26. PubMed ID: 22669285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
    He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair.
    Takase K; Niikura T; Fukui T; Kumabe Y; Sawauchi K; Yoshikawa R; Yamamoto Y; Nishida R; Matsumoto T; Kuroda R; Oe K
    J Mater Sci Mater Med; 2024 Sep; 35(1):53. PubMed ID: 39225913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating osteogenic potential of a 3D-printed bioceramic-based scaffold for critical-sized defect treatment: an in vivo and in vitro investigation.
    Safiaghdam H; Baniameri S; Aminianfar H; Mohajeri SF; Dehghan MM; Tayebi L; Nokhbatolfoghahaei H; Khojasteh A
    In Vitro Cell Dev Biol Anim; 2024 Jun; 60(6):657-666. PubMed ID: 38743380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications.
    Wang Y; Wang K; Li X; Wei Q; Chai W; Wang S; Che Y; Lu T; Zhang B
    PLoS One; 2017; 12(4):e0174870. PubMed ID: 28406922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.