These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 38579126)
1. Predicting Solvation Free Energies from the Minnesota Solvation Database Using Classical Density Functional Theory Based on the PC-SAFT Equation of State. Bursik B; Eller J; Gross J J Phys Chem B; 2024 Apr; 128(15):3677-3688. PubMed ID: 38579126 [TBL] [Abstract][Full Text] [Related]
2. Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state. Eller J; Matzerath T; van Westen T; Gross J J Chem Phys; 2021 Jun; 154(24):244106. PubMed ID: 34241354 [TBL] [Abstract][Full Text] [Related]
3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
4. Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density Functional Theory Based on the PCP-SAFT Equation of State. Sauer E; Terzis A; Theiss M; Weigand B; Gross J Langmuir; 2018 Oct; 34(42):12519-12531. PubMed ID: 30247038 [TBL] [Abstract][Full Text] [Related]
5. SM6: A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657 [TBL] [Abstract][Full Text] [Related]
6. Calculating Partition Coefficients of Small Molecules in Octanol/Water and Cyclohexane/Water. Bannan CC; Calabró G; Kyu DY; Mobley DL J Chem Theory Comput; 2016 Aug; 12(8):4015-24. PubMed ID: 27434695 [TBL] [Abstract][Full Text] [Related]
7. Purely Predicting the Pharmaceutical Solubility: What to Expect from PC-SAFT and COSMO-RS? Klajmon M Mol Pharm; 2022 Nov; 19(11):4212-4232. PubMed ID: 36136040 [TBL] [Abstract][Full Text] [Related]
8. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198 [TBL] [Abstract][Full Text] [Related]
9. Field-SEA: a model for computing the solvation free energies of nonpolar, polar, and charged solutes in water. Li L; Fennell CJ; Dill KA J Phys Chem B; 2014 Jun; 118(24):6431-7. PubMed ID: 24299013 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT. Paduszyński K; Domańska U J Phys Chem B; 2012 Apr; 116(16):5002-18. PubMed ID: 22469027 [TBL] [Abstract][Full Text] [Related]
11. The Use of Anisotropic Potentials in Modeling Water and Free Energies of Hydration. Karamertzanis PG; Raiteri P; Galindo A J Chem Theory Comput; 2010 May; 6(5):1590-607. PubMed ID: 26615693 [TBL] [Abstract][Full Text] [Related]
13. Application of PC-SAFT EOS for Pharmaceuticals: Solubility, Co-Crystal, and Thermodynamic Modeling. Mahmoudabadi SZ; Pazuki G J Pharm Sci; 2021 Jun; 110(6):2442-2451. PubMed ID: 33412168 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory. Chen L; Cruz A; Roe DR; Simmonett AC; Wickstrom L; Deng N; Kurtzman T J Chem Theory Comput; 2021 May; 17(5):2714-2724. PubMed ID: 33830762 [TBL] [Abstract][Full Text] [Related]
15. Identifying Systematic Force Field Errors Using a 3D-RISM Element Counting Correction. Casillas L; Grigorian VM; Luchko T Molecules; 2023 Jan; 28(3):. PubMed ID: 36770599 [TBL] [Abstract][Full Text] [Related]
16. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model. Aleksandrov A; Lin FY; Roux B; MacKerell AD J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546 [TBL] [Abstract][Full Text] [Related]
17. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field. Suzuoka D; Takahashi H; Ishiyama T; Morita A J Chem Phys; 2012 Dec; 137(21):214503. PubMed ID: 23231247 [TBL] [Abstract][Full Text] [Related]
18. Free energy of solvation from molecular dynamics simulations for low dielectric solvents. Gonçalves PF; Stassen H J Comput Chem; 2003 Nov; 24(14):1758-65. PubMed ID: 12964194 [TBL] [Abstract][Full Text] [Related]
19. Simulations of solvation free energies and solubilities in supercritical solvents. Su Z; Maroncelli M J Chem Phys; 2006 Apr; 124(16):164506. PubMed ID: 16674145 [TBL] [Abstract][Full Text] [Related]
20. Implicit Solvation Using the Superposition Approximation (IS-SPA): An Implicit Treatment of the Nonpolar Component to Solvation for Simulating Molecular Aggregation. Lake PT; McCullagh M J Chem Theory Comput; 2017 Dec; 13(12):5911-5924. PubMed ID: 29120632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]