These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38579304)
1. Modulating the Primary and Secondary Coordination Spheres of Single Ni(II) Sites in Metal-Organic Frameworks for Boosting Photocatalysis. Yang G; Wang D; Wang Y; Hu W; Hu S; Jiang J; Huang J; Jiang HL J Am Chem Soc; 2024 Apr; 146(15):10798-10805. PubMed ID: 38579304 [TBL] [Abstract][Full Text] [Related]
2. Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis. Ma X; Liu H; Yang W; Mao G; Zheng L; Jiang HL J Am Chem Soc; 2021 Aug; 143(31):12220-12229. PubMed ID: 34324821 [TBL] [Abstract][Full Text] [Related]
3. Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. Mao S; Zou Y; Sun G; Zeng L; Wang Z; Ma D; Guo Y; Cheng Y; Wang C; Shi JW J Colloid Interface Sci; 2021 Jan; 581(Pt A):1-10. PubMed ID: 32771721 [TBL] [Abstract][Full Text] [Related]
4. Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Xu M; Li D; Sun K; Jiao L; Xie C; Ding C; Jiang HL Angew Chem Int Ed Engl; 2021 Jul; 60(30):16372-16376. PubMed ID: 33988897 [TBL] [Abstract][Full Text] [Related]
5. Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H Wang S; Ai Z; Niu X; Yang W; Kang R; Lin Z; Waseem A; Jiao L; Jiang HL Adv Mater; 2023 Sep; 35(39):e2302512. PubMed ID: 37421606 [TBL] [Abstract][Full Text] [Related]
6. Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. Chen D; Yang W; Jiao L; Li L; Yu SH; Jiang HL Adv Mater; 2020 Jul; 32(30):e2000041. PubMed ID: 32529707 [TBL] [Abstract][Full Text] [Related]
7. A General Strategy to Immobilize Single-Atom Catalysts in Metal-Organic Frameworks for Enhanced Photocatalysis. Sui J; Liu H; Hu S; Sun K; Wan G; Zhou H; Zheng X; Jiang HL Adv Mater; 2022 Feb; 34(6):e2109203. PubMed ID: 34883530 [TBL] [Abstract][Full Text] [Related]
8. Hierarchically Porous Metal-Organic Framework/MoS Yu F; Jing X; Wang Y; Sun M; Duan C Angew Chem Int Ed Engl; 2021 Nov; 60(47):24849-24853. PubMed ID: 34435428 [TBL] [Abstract][Full Text] [Related]
9. Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO Fang ZB; Liu TT; Liu J; Jin S; Wu XP; Gong XQ; Wang K; Yin Q; Liu TF; Cao R; Zhou HC J Am Chem Soc; 2020 Jul; 142(28):12515-12523. PubMed ID: 32564596 [TBL] [Abstract][Full Text] [Related]
10. Electronic State and Microenvironment Modulation of Metal Nanoparticles Stabilized by MOFs for Boosting Electrocatalytic Nitrogen Reduction. Wen L; Sun K; Liu X; Yang W; Li L; Jiang HL Adv Mater; 2023 Apr; 35(15):e2210669. PubMed ID: 36871151 [TBL] [Abstract][Full Text] [Related]
11. Piezo-Photocatalysis over Metal-Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Zhang C; Lei D; Xie C; Hang X; He C; Jiang HL Adv Mater; 2021 Dec; 33(51):e2106308. PubMed ID: 34642997 [TBL] [Abstract][Full Text] [Related]
12. Heteroatom-Doped Ag Wang H; Zhang X; Zhang W; Zhou M; Jiang HL Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202401443. PubMed ID: 38407530 [TBL] [Abstract][Full Text] [Related]
13. Boosting photocatalytic H Dong S; Liu X; Kong X; Dong F; Yu Y; Wang L; Wang D; He Z; Song S Environ Sci Pollut Res Int; 2023 Nov; 30(51):111039-111050. PubMed ID: 37801244 [TBL] [Abstract][Full Text] [Related]
14. Transforming CO Yang K; Jiang J ACS Appl Mater Interfaces; 2021 Dec; 13(49):58723-58736. PubMed ID: 34846838 [TBL] [Abstract][Full Text] [Related]
15. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Wang C; Xie Z; deKrafft KE; Lin W J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787 [TBL] [Abstract][Full Text] [Related]
16. Zirconium-Based Metal-Organic Framework for Efficient Photocatalytic Reduction of CO Gao X; Guo B; Guo C; Meng Q; Liang J; Liu J ACS Appl Mater Interfaces; 2020 May; 12(21):24059-24065. PubMed ID: 32364366 [TBL] [Abstract][Full Text] [Related]
17. Aligning Metal Coordination Sites in Metal-Organic Framework-Enabled Metallaphotoredox Catalysis. Liu T; Deng C; Meng D; Zhang Y; Duan R; Ji H; Sheng H; Li J; Chen C; Zhao J; Song W ACS Appl Mater Interfaces; 2023 Feb; 15(4):5139-5147. PubMed ID: 36688925 [TBL] [Abstract][Full Text] [Related]
18. Boosting the catalysis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 by microenvironment modulation for epoxidation of alkenes. Hu D; Miao S; Zhang P; Wu S; He YP; Meng Q Dalton Trans; 2023 Oct; 52(40):14676-14685. PubMed ID: 37791565 [TBL] [Abstract][Full Text] [Related]
19. Introducing Hydrogen-Bonding Microenvironment in Close Proximity to Single-Atom Sites for Boosting Photocatalytic Hydrogen Production. Hu S; Gao ML; Huang J; Wang H; Wang Q; Yang W; Sun Z; Zheng X; Jiang HL J Am Chem Soc; 2024 Jul; 146(29):20391-20400. PubMed ID: 38987861 [TBL] [Abstract][Full Text] [Related]
20. Building 2D/2D CdS/MOLs Heterojunctions for Efficient Photocatalytic Hydrogen Evolution. Yang W; Xu M; Tao KY; Zhang JH; Zhong DC; Lu TB Small; 2022 May; 18(20):e2200332. PubMed ID: 35451165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]