These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38579624)
1. Nanozyme-assisted molecularly imprinted polymer-based indirect competitive ELISA for the detection of marine biotoxin. Cho CH; Kim JH; Padalkar NS; Reddy YVM; Park TJ; Park J; Park JP Biosens Bioelectron; 2024 Jul; 255():116269. PubMed ID: 38579624 [TBL] [Abstract][Full Text] [Related]
2. A competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of AuNPs nanozyme for highly sensitive detection of saxitoxin. Zhao Y; Li L; Ma R; Wang L; Yan X; Qi X; Wang S; Mao X Anal Chim Acta; 2021 Aug; 1173():338710. PubMed ID: 34172145 [TBL] [Abstract][Full Text] [Related]
3. Determination of paralytic shellfish toxins in shellfish by receptor binding assay: collaborative study. Van Dolah FM; Fire SE; Leighfield TA; Mikulski CM; Doucette GJ J AOAC Int; 2012; 95(3):795-812. PubMed ID: 22816272 [TBL] [Abstract][Full Text] [Related]
4. Indirect enzyme-linked immunosorbent assay for saxitoxin in shellfish. Chu FS; Fan TS J Assoc Off Anal Chem; 1985; 68(1):13-6. PubMed ID: 3980403 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Sehit E; Drzazgowska J; Buchenau D; Yesildag C; Lensen M; Altintas Z Biosens Bioelectron; 2020 Oct; 165():112432. PubMed ID: 32729546 [TBL] [Abstract][Full Text] [Related]
6. Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy. Cao C; Li P; Liao H; Wang J; Tang X; Yang L Anal Bioanal Chem; 2020 Jul; 412(19):4609-4617. PubMed ID: 32548768 [TBL] [Abstract][Full Text] [Related]
7. Molecularly imprinted polymers enhanced peroxidase-like activity of AuNPs for determination of glutathione. Zhang X; Peng J; Xi L; Lu Z; Yu L; Liu M; Huo D; He H Mikrochim Acta; 2022 Nov; 189(12):457. PubMed ID: 36417016 [TBL] [Abstract][Full Text] [Related]
8. The development of reference materials for paralytic shellfish poisoning toxins in lyophilized mussel. I: Interlaboratory studies of methods of analysis. van den Top HJ; Boenke A; Burdaspal PA; Bustos J; van Egmond HP; Legarda T; Mesego A; Mouriño A; Paulsch WE; Salgado C Food Addit Contam; 2000 Jun; 17(6):419-33. PubMed ID: 10932785 [TBL] [Abstract][Full Text] [Related]
9. Single-laboratory validation of the microplate receptor binding assay for paralytic shellfish toxins in shellfish. Van Dolah FM; Leighfield TA; Doucette GJ; Bean L; Niedzwiadek B; Rawn DF J AOAC Int; 2009; 92(6):1705-13. PubMed ID: 20166588 [TBL] [Abstract][Full Text] [Related]
10. A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Jin X; Chen J; Zeng X; Xu L; Wu Y; Fu F Biosens Bioelectron; 2019 Mar; 128():45-51. PubMed ID: 30620920 [TBL] [Abstract][Full Text] [Related]
11. Rapid and sensitive detection of domoic acid in shellfish using a magnetic bead-based competitive ELISA with a high-affinity peptide as a molecular binder. Kim JH; Cho CH; Park TJ; Park JP Chemosphere; 2024 Sep; 364():143274. PubMed ID: 39243896 [TBL] [Abstract][Full Text] [Related]
12. An electrochemical PAH-modified aptasensor for the label-free and highly-sensitive detection of saxitoxin. Noureen B; Ullah N; Tian Y; Du L; Chen W; Wu C; Wang P Talanta; 2022 Apr; 240():123185. PubMed ID: 34973551 [TBL] [Abstract][Full Text] [Related]
14. A dual action electrochemical molecularly imprinted aptasensor for ultra-trace detection of carbendazim. Khosropour H; Keramat M; Laiwattanapaisal W Biosens Bioelectron; 2024 Jan; 243():115754. PubMed ID: 37857063 [TBL] [Abstract][Full Text] [Related]
15. Saxitoxin puffer fish poisoning in the United States, with the first report of Pyrodinium bahamense as the putative toxin source. Landsberg JH; Hall S; Johannessen JN; White KD; Conrad SM; Abbott JP; Flewelling LJ; Richardson RW; Dickey RW; Jester EL; Etheridge SM; Deeds JR; Van Dolah FM; Leighfield TA; Zou Y; Beaudry CG; Benner RA; Rogers PL; Scott PS; Kawabata K; Wolny JL; Steidinger KA Environ Health Perspect; 2006 Oct; 114(10):1502-7. PubMed ID: 17035133 [TBL] [Abstract][Full Text] [Related]
16. A carboxyl-functionalized covalent organic polymer for the efficient adsorption of saxitoxin. Wang T; Fernandes SPS; Araújo J; Li X; Salonen LM; Espiña B J Hazard Mater; 2023 Jun; 452():131247. PubMed ID: 36963199 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive electrochemical peptide-based biosensor for marine biotoxin detection using a bimetallic platinum and ruthenium nanoparticle-tethered metal-organic framework modified electrode. Raju CV; Manohara Reddy YV; Cho CH; Shin HH; Park TJ; Park JP Food Chem; 2023 Dec; 428():136811. PubMed ID: 37423105 [TBL] [Abstract][Full Text] [Related]
18. Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish. Zhao C; Zhang Z; Li J; Lu Y; Ma F; Wang Z; Geng J; Huang B; Qin Y Toxins (Basel); 2024 Aug; 16(8):. PubMed ID: 39195751 [TBL] [Abstract][Full Text] [Related]
19. Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords. García C; del Carmen Bravo M; Lagos M; Lagos N Toxicon; 2004 Feb; 43(2):149-58. PubMed ID: 15019474 [TBL] [Abstract][Full Text] [Related]
20. Production of antibodies and development of highly sensitive formats of enzyme immunoassay for saxitoxin analysis. Micheli L; Di Stefano S; Moscone D; Palleschi G; Marini S; Coletta M; Draisci R; delli Quadri F Anal Bioanal Chem; 2002 Apr; 373(8):678-84. PubMed ID: 12194023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]