These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38579683)

  • 1. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury.
    Lai JD; Berlind JE; Fricklas G; Lie C; Urenda JP; Lam K; Sta Maria N; Jacobs R; Yu V; Zhao Z; Ichida JK
    Cell Stem Cell; 2024 Apr; 31(4):519-536.e8. PubMed ID: 38579683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated mild traumatic brain injury triggers pathology in asymptomatic C9ORF72 transgenic mice.
    Kahriman A; Bouley J; Tuncali I; Dogan EO; Pereira M; Luu T; Bosco DA; Jaber S; Peters OM; Brown RH; Henninger N
    Brain; 2023 Dec; 146(12):5139-5152. PubMed ID: 37527465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology.
    Szebényi K; Wenger LMD; Sun Y; Dunn AWE; Limegrover CA; Gibbons GM; Conci E; Paulsen O; Mierau SB; Balmus G; Lakatos A
    Nat Neurosci; 2021 Nov; 24(11):1542-1554. PubMed ID: 34675437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway.
    Ciura S; Sellier C; Campanari ML; Charlet-Berguerand N; Kabashi E
    Autophagy; 2016 Aug; 12(8):1406-8. PubMed ID: 27245636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traumatic brain injury induces TDP-43 mislocalization and neurodegenerative effects in tissue distal to the primary injury site in a non-transgenic mouse.
    Bjorklund GR; Wong J; Brafman D; Bowser R; Stabenfeldt SE
    Acta Neuropathol Commun; 2023 Aug; 11(1):137. PubMed ID: 37608352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain.
    Umoh ME; Dammer EB; Dai J; Duong DM; Lah JJ; Levey AI; Gearing M; Glass JD; Seyfried NT
    EMBO Mol Med; 2018 Jan; 10(1):48-62. PubMed ID: 29191947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models.
    Anderson EN; Gochenaur L; Singh A; Grant R; Patel K; Watkins S; Wu JY; Pandey UB
    Hum Mol Genet; 2018 Apr; 27(8):1366-1381. PubMed ID: 29432563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptic exon detection and transcriptomic changes revealed in single-nuclei RNA sequencing of C9ORF72 patients spanning the ALS-FTD spectrum.
    Gittings LM; Alsop EB; Antone J; Singer M; Whitsett TG; Sattler R; Van Keuren-Jensen K
    Acta Neuropathol; 2023 Sep; 146(3):433-450. PubMed ID: 37466726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72.
    Murray ME; DeJesus-Hernandez M; Rutherford NJ; Baker M; Duara R; Graff-Radford NR; Wszolek ZK; Ferman TJ; Josephs KA; Boylan KB; Rademakers R; Dickson DW
    Acta Neuropathol; 2011 Dec; 122(6):673-90. PubMed ID: 22083254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical and neuropathological features of ALS/FTD with TIA1 mutations.
    Hirsch-Reinshagen V; Pottier C; Nicholson AM; Baker M; Hsiung GR; Krieger C; Sengdy P; Boylan KB; Dickson DW; Mesulam M; Weintraub S; Bigio E; Zinman L; Keith J; Rogaeva E; Zivkovic SA; Lacomis D; Taylor JP; Rademakers R; Mackenzie IRA
    Acta Neuropathol Commun; 2017 Dec; 5(1):96. PubMed ID: 29216908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features.
    Shaw MP; Higginbottom A; McGown A; Castelli LM; James E; Hautbergue GM; Shaw PJ; Ramesh TM
    Acta Neuropathol Commun; 2018 Nov; 6(1):125. PubMed ID: 30454072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration.
    Solomon DA; Stepto A; Au WH; Adachi Y; Diaper DC; Hall R; Rekhi A; Boudi A; Tziortzouda P; Lee YB; Smith B; Bridi JC; Spinelli G; Dearlove J; Humphrey DM; Gallo JM; Troakes C; Fanto M; Soller M; Rogelj B; Parsons RB; Shaw CE; Hortobágyi T; Hirth F
    Brain; 2018 Oct; 141(10):2908-2924. PubMed ID: 30239641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology.
    Nana AL; Sidhu M; Gaus SE; Hwang JL; Li L; Park Y; Kim EJ; Pasquini L; Allen IE; Rankin KP; Toller G; Kramer JH; Geschwind DH; Coppola G; Huang EJ; Grinberg LT; Miller BL; Seeley WW
    Acta Neuropathol; 2019 Jan; 137(1):27-46. PubMed ID: 30511086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial Cell Dysfunction in
    Ghasemi M; Keyhanian K; Douthwright C
    Cells; 2021 Jan; 10(2):. PubMed ID: 33525344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
    Beckers J; Tharkeshwar AK; Van Damme P
    Autophagy; 2021 Nov; 17(11):3306-3322. PubMed ID: 33632058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granulin loss of function in human mature brain organoids implicates astrocytes in TDP-43 pathology.
    de Majo M; Koontz M; Marsan E; Salinas N; Ramsey A; Kuo YM; Seo K; Li H; Dräger N; Leng K; Gonzales SL; Kurnellas M; Miyaoka Y; Klim JR; Kampmann M; Ward ME; Huang EJ; Ullian EM
    Stem Cell Reports; 2023 Mar; 18(3):706-719. PubMed ID: 36827976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
    Dafinca R; Scaber J; Ababneh N; Lalic T; Weir G; Christian H; Vowles J; Douglas AG; Fletcher-Jones A; Browne C; Nakanishi M; Turner MR; Wade-Martins R; Cowley SA; Talbot K
    Stem Cells; 2016 Aug; 34(8):2063-78. PubMed ID: 27097283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis.
    Gao C; Shi Q; Pan X; Chen J; Zhang Y; Lang J; Wen S; Liu X; Cheng TL; Lei K
    Cell Rep; 2024 Mar; 43(3):113892. PubMed ID: 38431841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traffic jam at the nuclear pore: All roads lead to nucleocytoplasmic transport defects in ALS/FTD.
    Fallini C; Khalil B; Smith CL; Rossoll W
    Neurobiol Dis; 2020 Jul; 140():104835. PubMed ID: 32179176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
    Bright F; Chan G; van Hummel A; Ittner LM; Ke YD
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.