BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38579696)

  • 21. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decoding and interpreting cortical signals with a compact convolutional neural network.
    Petrosyan A; Sinkin M; Lebedev M; Ossadtchi A
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524962
    [No Abstract]   [Full Text] [Related]  

  • 23. Closed-loop motor imagery EEG simulation for brain-computer interfaces.
    Shin H; Suma D; He B
    Front Hum Neurosci; 2022; 16():951591. PubMed ID: 36061506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity.
    Hu S; Zhang Q; Wang J; Chen Z
    J Neurophysiol; 2018 Apr; 119(4):1394-1410. PubMed ID: 29357468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans.
    Ojeda A; Buscher N; Balasubramani P; Maric V; Ramanathan D; Mishra J
    Biomed Phys Eng Express; 2020 Apr; 6(3):035023. PubMed ID: 33438668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Jump-GRS: a multi-phase approach to structured pruning of neural networks for neural decoding.
    Wu X; Lin DT; Chen R; Bhattacharyya SS
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429288
    [No Abstract]   [Full Text] [Related]  

  • 27. Learning neural decoders without labels using multiple data streams.
    Peterson SM; Rao RPN; Brunton BW
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35905727
    [No Abstract]   [Full Text] [Related]  

  • 28. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning Neural Encoders for Motor Cortex.
    Liang KF; Kao JC
    IEEE Trans Biomed Eng; 2020 Aug; 67(8):2145-2158. PubMed ID: 31765302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity.
    Ahmadipour P; Sani OG; Pesaran B; Shanechi MM
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38016450
    [No Abstract]   [Full Text] [Related]  

  • 31. Deep learning for neural decoding in motor cortex.
    Liu F; Meamardoost S; Gunawan R; Komiyama T; Mewes C; Zhang Y; Hwang E; Wang L
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36148535
    [No Abstract]   [Full Text] [Related]  

  • 32. Firing-rate-modulated spike detection and neural decoding co-design.
    Zhang Z; Constandinou TG
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37080210
    [No Abstract]   [Full Text] [Related]  

  • 33. Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning.
    Ahmadi N; Constandinou TG; Bouganis CS
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33477128
    [No Abstract]   [Full Text] [Related]  

  • 34. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection of Essential Neural Activity Timesteps for Intracortical Brain-Computer Interface Based on Recurrent Neural Network.
    Yang SH; Huang JW; Huang CJ; Chiu PH; Lai HY; Chen YY
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstruction of natural visual scenes from neural spikes with deep neural networks.
    Zhang Y; Jia S; Zheng Y; Yu Z; Tian Y; Ma S; Huang T; Liu JK
    Neural Netw; 2020 May; 125():19-30. PubMed ID: 32070853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advantages of closed-loop calibration in intracortical brain-computer interfaces for people with tetraplegia.
    Jarosiewicz B; Masse NY; Bacher D; Cash SS; Eskandar E; Friehs G; Donoghue JP; Hochberg LR
    J Neural Eng; 2013 Aug; 10(4):046012. PubMed ID: 23838067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A lightweight learning-based decoding algorithm for intraneural vagus nerve activity classification in pigs.
    Pollina L; Vallone F; Ottaviani MM; Strauss I; Carlucci L; Recchia FA; Micera S; Moccia S
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35896098
    [No Abstract]   [Full Text] [Related]  

  • 39. Towards neural co-processors for the brain: combining decoding and encoding in brain-computer interfaces.
    Rao RP
    Curr Opin Neurobiol; 2019 Apr; 55():142-151. PubMed ID: 30954862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale brain-machine interface decoders.
    Han-Lin Hsieh ; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6361-6364. PubMed ID: 28269704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.