These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38579746)

  • 1. Thermal conductivity of wrinkled graphene ring with defects.
    Ji Q; Li B; Kadic M; Wang C
    J Phys Condens Matter; 2024 Apr; 36(28):. PubMed ID: 38579746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear deformation-induced anisotropic thermal conductivity of graphene.
    Cui L; Shi S; Wei G; Du X
    Phys Chem Chem Phys; 2018 Jan; 20(2):951-957. PubMed ID: 29231938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of defective graphene: an efficient molecular dynamics study based on graphics processing units.
    Wu X; Han Q
    Nanotechnology; 2020 May; 31(21):215708. PubMed ID: 32032004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable wrinkling pattern in annular graphene under circular shearing at inner edge.
    Zhang Z; Duan WH; Wang CM
    Nanoscale; 2012 Aug; 4(16):5077-81. PubMed ID: 22776983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Induced Etching Features of Wrinkled Graphene Domains.
    Li Q; Li F; Li Y; Du Y; Shih TM; Kan E
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Conductivity of Defective Graphene Oxide: A Molecular Dynamic Study.
    Yang Y; Cao J; Wei N; Meng D; Wang L; Ren G; Yan R; Zhang N
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30897783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal transport across wrinkles in few-layer graphene stacks.
    Mohapatra A; Das S; Majumdar K; Ramachandra Rao MS; Jaiswal M
    Nanoscale Adv; 2021 Mar; 3(6):1708-1716. PubMed ID: 36132551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected Behavior in Thermal Conductivity of Confined Monolayer Water.
    Zhao Z; Jin Y; Zhou R; Sun C; Huang X
    J Phys Chem B; 2023 May; 127(18):4090-4098. PubMed ID: 37105181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic thermal conductivity of graphene wrinkles.
    Wang C; Liu Y; Li L; Tan H
    Nanoscale; 2014 Jun; 6(11):5703-7. PubMed ID: 24781319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Simulation of Nanoindentation on the Regular Wrinkled Graphene Sheet.
    Wang R; Pang H; Li M; Lai L
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32138250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene.
    Lee BS
    J Phys Condens Matter; 2018 Jul; 30(29):295302. PubMed ID: 29873305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport in porous graphene with coupling effect of nanopore shape and defect concentration.
    Yin H; Zhao R; Liu K; Yang Y; Jiang JW; Wan J
    Nanotechnology; 2022 Jul; 33(42):. PubMed ID: 35830769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-size effect on wrinkle and fracture of monolayer graphene subjected to in-plane shear.
    Zhao J; Guo X; Lu L
    Nanotechnology; 2017 Nov; 28(45):455702. PubMed ID: 28952464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Interface Defects in Graphene/H-BN In-Plane Heterostructures: Insights into the Interfacial Thermal Transport.
    Zhang N; Zhou B; Li D; Qi D; Wu Y; Zheng H; Yang B
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S
    J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal transport in a defective pillared graphene network: insights from equilibrium molecular dynamics simulation.
    Panneerselvam V; Sathian SP
    Phys Chem Chem Phys; 2024 Apr; 26(14):10650-10659. PubMed ID: 38511499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic Friction of Wrinkled Graphene Grown by Chemical Vapor Deposition.
    Long F; Yasaei P; Yao W; Salehi-Khojin A; Shahbazian-Yassar R
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20922-20927. PubMed ID: 28513130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic Mechanisms Behind the High Friction and Failure Initiation of Graphene Wrinkles.
    Huang Z; Chen S; Lin Q; Ji Z; Gong P; Sun Z; Shen B
    Langmuir; 2021 Jun; 37(22):6776-6782. PubMed ID: 34032438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrinkle-induced highly conductive channels in graphene on SiO
    Ma RS; Ma J; Yan J; Wu L; Guo W; Wang S; Huan Q; Bao L; Pantelides ST; Gao HJ
    Nanoscale; 2020 Jun; 12(22):12038-12045. PubMed ID: 32469037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.