These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38580022)

  • 1. Novel insights into drought-induced regulation of ribosomal genes through DNA methylation in chickpea.
    Yadav S; Yadava YK; Meena S; Kalwan G; Bharadwaj C; Paul V; Kansal R; Gaikwad K; Jain PK
    Int J Biol Macromol; 2024 May; 266(Pt 2):131380. PubMed ID: 38580022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (
    Bhaskarla V; Zinta G; Ford R; Jain M; Varshney RK; Mantri N
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.).
    Sachdeva S; Bharadwaj C; Singh RK; Jain PK; Patil BS; Roorkiwal M; Varshney R
    PLoS One; 2020; 15(7):e0234550. PubMed ID: 32663226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea.
    Garg R; Shankar R; Thakkar B; Kudapa H; Krishnamurthy L; Mantri N; Varshney RK; Bhatia S; Jain M
    Sci Rep; 2016 Jan; 6():19228. PubMed ID: 26759178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.
    Deokar AA; Kondawar V; Kohli D; Aslam M; Jain PK; Karuppayil SM; Varshney RK; Srinivasan R
    Funct Integr Genomics; 2015 Jan; 15(1):27-46. PubMed ID: 25274312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide discovery of DNA polymorphisms via resequencing of chickpea cultivars with contrasting response to drought stress.
    Rajkumar MS; Garg R; Jain M
    Physiol Plant; 2022 Jan; 174(1):e13611. PubMed ID: 34957568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SPL transcription factor genes are potential targets for epigenetic regulation in response to drought stress in chickpea (C. arietinum L.).
    Yadav S; Yadava YK; Meena S; Singh L; Kansal R; Grover M; M S N; Bharadwaj C; Paul V; Gaikwad K; Jain PK
    Mol Biol Rep; 2023 Jun; 50(6):5509-5517. PubMed ID: 37119417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis and identification of drought-responsive candidate NAC genes in three semi-arid tropics (SAT) legume crops.
    Singh S; Kudapa H; Garg V; Varshney RK
    BMC Genomics; 2021 Apr; 22(1):289. PubMed ID: 33882825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.
    Deokar AA; Kondawar V; Jain PK; Karuppayil SM; Raju NL; Vadez V; Varshney RK; Srinivasan R
    BMC Plant Biol; 2011 Apr; 11():70. PubMed ID: 21513527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.).
    Mahdavi Mashaki K; Garg V; Nasrollahnezhad Ghomi AA; Kudapa H; Chitikineni A; Zaynali Nezhad K; Yamchi A; Soltanloo H; Varshney RK; Thudi M
    PLoS One; 2018; 13(6):e0199774. PubMed ID: 29953498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of drought stress on the expression pattern of genes involved in ABA biosynthesis in Desi-type chickpea (Cicer arietinum L.).
    Kasbi EA; Taleei A; Amiri RM
    Mol Biol Rep; 2024 Mar; 51(1):469. PubMed ID: 38551733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.).
    Varshney RK; Hiremath PJ; Lekha P; Kashiwagi J; Balaji J; Deokar AA; Vadez V; Xiao Y; Srinivasan R; Gaur PM; Siddique KH; Town CD; Hoisington DA
    BMC Genomics; 2009 Nov; 10():523. PubMed ID: 19912666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress.
    Moenga SM; Gai Y; Carrasquilla-Garcia N; Perilla-Henao LM; Cook DR
    Plant J; 2020 Dec; 104(5):1195-1214. PubMed ID: 32920943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit.
    Das A; Basu PS; Kumar M; Ansari J; Shukla A; Thakur S; Singh P; Datta S; Chaturvedi SK; Sheshshayee MS; Bansal KC; Singh NP
    BMC Plant Biol; 2021 Jan; 21(1):39. PubMed ID: 33430800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials.
    Shah TM; Imran M; Atta BM; Ashraf MY; Hameed A; Waqar I; Shafiq M; Hussain K; Naveed M; Aslam M; Maqbool MA
    BMC Plant Biol; 2020 Apr; 20(1):171. PubMed ID: 32303179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis.
    Yu X; Liu Y; Wang S; Tao Y; Wang Z; Shu Y; Peng H; Mijiti A; Wang Z; Zhang H; Ma H
    Plant Cell Rep; 2016 Mar; 35(3):613-27. PubMed ID: 26650836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress.
    De Domenico S; Bonsegna S; Horres R; Pastor V; Taurino M; Poltronieri P; Imtiaz M; Kahl G; Flors V; Winter P; Santino A
    Plant Physiol Biochem; 2012 Dec; 61():115-22. PubMed ID: 23141673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chickpea WRKY70 Regulates the Expression of a Homeodomain-Leucine Zipper (HD-Zip) I Transcription Factor CaHDZ12, which Confers Abiotic Stress Tolerance in Transgenic Tobacco and Chickpea.
    Sen S; Chakraborty J; Ghosh P; Basu D; Das S
    Plant Cell Physiol; 2017 Nov; 58(11):1934-1952. PubMed ID: 29016956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR408 overexpression causes increased drought tolerance in chickpea.
    Hajyzadeh M; Turktas M; Khawar KM; Unver T
    Gene; 2015 Jan; 555(2):186-93. PubMed ID: 25445265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide profiling of drought-tolerant Arabidopsis plants over-expressing chickpea MT1 gene reveals transcription factors implicated in stress modulation.
    Kumar S; Yadav A; Bano N; Dubey AK; Verma R; Pandey A; Kumar A; Bag S; Srivastava S; Sanyal I
    Funct Integr Genomics; 2022 Apr; 22(2):153-170. PubMed ID: 34988675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.