These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 38580870)

  • 1. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism.
    Yang F; Lee G; Fan Y
    Angiogenesis; 2024 Apr; ():. PubMed ID: 38580870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer-cell-intrinsic mechanisms regulate MDSCs through cytokine networks.
    Zhang Y; Murphy S; Lu X
    Int Rev Cell Mol Biol; 2023; 375():1-31. PubMed ID: 36967150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer.
    Yu P; Wang Y; Yuan D; Sun Y; Qin S; Li T
    Front Immunol; 2023; 14():1276694. PubMed ID: 37936692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous Myeloid Cells in Tumors.
    Dou A; Fang J
    Cancers (Basel); 2021 Jul; 13(15):. PubMed ID: 34359674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
    De Cicco P; Ercolano G; Ianaro A
    Front Immunol; 2020; 11():1680. PubMed ID: 32849585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy.
    Finke J; Ko J; Rini B; Rayman P; Ireland J; Cohen P
    Int Immunopharmacol; 2011 Jul; 11(7):856-61. PubMed ID: 21315783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming endothelial cells to empower cancer immunotherapy.
    Cleveland AH; Fan Y
    Trends Mol Med; 2024 Feb; 30(2):126-135. PubMed ID: 38040601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction.
    McDonald PC; Chafe SC; Dedhar S
    Front Cell Dev Biol; 2016; 4():27. PubMed ID: 27066484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment.
    Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P
    Front Immunol; 2020; 11():585214. PubMed ID: 33613512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade.
    Zheng W; Qian C; Tang Y; Yang C; Zhou Y; Shen P; Chen W; Yu S; Wei Z; Wang A; Lu Y; Zhao Y
    Front Immunol; 2022; 13():1035323. PubMed ID: 36439137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
    Dysthe M; Parihar R
    Adv Exp Med Biol; 2020; 1224():117-140. PubMed ID: 32036608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point?
    Thomas JA; Gireesh Moly AG; Xavier H; Suboj P; Ladha A; Gupta G; Singh SK; Palit P; Babykutty S
    Front Oncol; 2023; 13():1063051. PubMed ID: 37056346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives.
    Mortezaee K
    Life Sci; 2021 Jul; 277():119627. PubMed ID: 34004256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloid-derived suppressor cells: The green light for myeloma immune escape.
    Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA
    Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy.
    Uribesalgo I; Hoffmann D; Zhang Y; Kavirayani A; Lazovic J; Berta J; Novatchkova M; Pai TP; Wimmer RA; László V; Schramek D; Karim R; Tortola L; Deswal S; Haas L; Zuber J; Szűcs M; Kuba K; Dome B; Cao Y; Haubner BJ; Penninger JM
    EMBO Mol Med; 2019 Aug; 11(8):e9266. PubMed ID: 31267692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloid-derived suppressor cells deficient in cholesterol biosynthesis promote tumor immune evasion.
    Chen Y; Xu Y; Zhao H; Zhou Y; Zhang J; Lei J; Wu L; Zhou M; Wang J; Yang S; Zhang X; Yan G; Li Y
    Cancer Lett; 2023 Jun; 564():216208. PubMed ID: 37150500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudoneutrophil Cytokine Sponges Disrupt Myeloid Expansion and Tumor Trafficking to Improve Cancer Immunotherapy.
    Li S; Wang Q; Shen Y; Hassan M; Shen J; Jiang W; Su Y; Chen J; Bai L; Zhou W; Wang Y
    Nano Lett; 2020 Jan; 20(1):242-251. PubMed ID: 31790598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer.
    Chaib M; Chauhan SC; Makowski L
    Front Cell Dev Biol; 2020; 8():351. PubMed ID: 32509781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.