These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 38580939)
1. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study. Chen W; Lin G; Chen Y; Cheng F; Li X; Ding J; Zhong Y; Kong C; Chen M; Xia S; Lu C; Ji J BMC Cancer; 2024 Apr; 24(1):418. PubMed ID: 38580939 [TBL] [Abstract][Full Text] [Related]
2. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques. Sim Y; Kim M; Kim J; Lee SK; Han K; Sohn B Eur Radiol; 2024 May; 34(5):3102-3112. PubMed ID: 37848774 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma. Xu A; Chu X; Zhang S; Zheng J; Shi D; Lv S; Li F; Weng X BMC Cancer; 2022 Aug; 22(1):872. PubMed ID: 35945526 [TBL] [Abstract][Full Text] [Related]
4. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
5. Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Yuan Y; Ren J; Tao X Eur Radiol; 2021 Sep; 31(9):6429-6437. PubMed ID: 33569617 [TBL] [Abstract][Full Text] [Related]
6. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
7. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
8. Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study. Yimit Y; Yasin P; Tuersun A; Wang J; Wang X; Huang C; Abudoubari S; Chen X; Ibrahim I; Nijiati P; Wang Y; Zou X; Nijiati M Acad Radiol; 2024 Aug; 31(8):3384-3396. PubMed ID: 38508934 [TBL] [Abstract][Full Text] [Related]
9. Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram. Lin M; Lin N; Yu S; Sha Y; Zeng Y; Liu A; Niu Y Acad Radiol; 2023 Oct; 30(10):2201-2211. PubMed ID: 36925335 [TBL] [Abstract][Full Text] [Related]
10. Radiomics from dual-energy CT-derived iodine maps predict lymph node metastasis in head and neck squamous cell carcinoma. Zhang W; Liu J; Jin W; Li R; Xie X; Zhao W; Xia S; Han D Radiol Med; 2024 Feb; 129(2):252-267. PubMed ID: 38015363 [TBL] [Abstract][Full Text] [Related]
11. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study. Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702 [TBL] [Abstract][Full Text] [Related]
12. CT radiomics nomogram for prediction of the Ki-67 index in head and neck squamous cell carcinoma. Zheng YM; Chen J; Zhang M; Wu ZJ; Tang GZ; Zhang Y; Dong C Eur Radiol; 2023 Mar; 33(3):2160-2170. PubMed ID: 36222864 [TBL] [Abstract][Full Text] [Related]
13. Oropharyngeal squamous cell carcinoma: radiomic machine-learning classifiers from multiparametric MR images for determination of HPV infection status. Suh CH; Lee KH; Choi YJ; Chung SR; Baek JH; Lee JH; Yun J; Ham S; Kim N Sci Rep; 2020 Oct; 10(1):17525. PubMed ID: 33067484 [TBL] [Abstract][Full Text] [Related]
14. A machine learning radiomics model based on bpMRI to predict bone metastasis in newly diagnosed prostate cancer patients. Xinyang S; Shuang Z; Tianci S; Xiangyu H; Yangyang W; Mengying D; Jingran Z; Feng Y Magn Reson Imaging; 2024 Apr; 107():15-23. PubMed ID: 38181835 [TBL] [Abstract][Full Text] [Related]
15. Machine learning-based MRI radiomics for assessing the level of tumor infiltrating lymphocytes in oral tongue squamous cell carcinoma: a pilot study. Ren J; Yang G; Song Y; Zhang C; Yuan Y BMC Med Imaging; 2024 Feb; 24(1):33. PubMed ID: 38317076 [TBL] [Abstract][Full Text] [Related]
16. Association of Pathological Features and Multiparametric MRI-Based Radiomics With TP53-Mutated Prostate Cancer. Chen R; Zhou B; Liu W; Gan H; Liu X; Zhou L J Magn Reson Imaging; 2024 Sep; 60(3):1134-1145. PubMed ID: 38153859 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning-Based MRI Radiogenomics for Evaluation of Response to Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma. Li Z; Wang R; Wang L; Tan C; Xu J; Fang J; Xian J Acad Radiol; 2024 Jun; 31(6):2464-2475. PubMed ID: 37985290 [TBL] [Abstract][Full Text] [Related]
18. Peritumoral and Intratumoral Texture Features Based on Multiparametric MRI and Multiple Machine Learning Methods to Preoperatively Evaluate the Pathological Outcomes of Pancreatic Cancer. Xie N; Fan X; Chen D; Chen J; Yu H; He M; Liu H; Yin X; Li B; Wang H J Magn Reson Imaging; 2023 Aug; 58(2):379-391. PubMed ID: 36426965 [TBL] [Abstract][Full Text] [Related]
19. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers. Li J; Li X; Ma J; Wang F; Cui S; Ye Z Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713 [TBL] [Abstract][Full Text] [Related]
20. Integration of ultrasound radiomics features and clinical factors: A nomogram model for identifying the Ki-67 status in patients with breast carcinoma. Wu J; Fang Q; Yao J; Ge L; Hu L; Wang Z; Jin G Front Oncol; 2022; 12():979358. PubMed ID: 36276108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]