These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38581031)

  • 1. Brain-machine interface based on deep learning to control asynchronously a lower-limb robotic exoskeleton: a case-of-study.
    Ferrero L; Soriano-Segura P; Navarro J; Jones O; Ortiz M; Iáñez E; Azorín JM; Contreras-Vidal JL
    J Neuroeng Rehabil; 2024 Apr; 21(1):48. PubMed ID: 38581031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer Learning with CNN Models for Brain-Machine Interfaces to command lower-limb exoskeletons: A Solution for Limited Data
    Ferrero L; Quiles V; Soriano-Segura P; Ortiz M; Ianez E; Contreras-Vidal JL; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential.
    Soriano-Segura P; Ortiz M; Iáñez E; Azorín JM
    Comput Methods Programs Biomed; 2024 Oct; 255():108332. PubMed ID: 39053352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting lower-limb motor imagery performance through an ensemble method for gait rehabilitation.
    Zhang J; Liu D; Chen W; Pei Z; Wang J
    Comput Biol Med; 2024 Feb; 169():107910. PubMed ID: 38183703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding neural activity preceding balance loss during standing with a lower-limb exoskeleton using an interpretable deep learning model.
    Sujatha Ravindran A; Malaya CA; John I; Francisco GE; Layne C; Contreras-Vidal JL
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35508113
    [No Abstract]   [Full Text] [Related]  

  • 6. Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training.
    Xie Y; Wang K; Meng J; Yue J; Meng L; Yi W; Jung TP; Xu M; Ming D
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37774694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a Motor Imagery-Based Real-Time Asynchronous Hybrid BCI Controller for a Lower-Limb Exoskeleton.
    Choi J; Kim KT; Jeong JH; Kim L; Lee SJ; Kim H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of critical challenges in MI-BCI: From conventional to deep learning methods.
    Khademi Z; Ebrahimi F; Kordy HM
    J Neurosci Methods; 2023 Jan; 383():109736. PubMed ID: 36349568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An EEG database for the cognitive assessment of motor imagery during walking with a lower-limb exoskeleton.
    Ortiz M; de la Ossa L; Juan J; Iáñez E; Torricelli D; Tornero J; Azorín JM
    Sci Data; 2023 Jun; 10(1):343. PubMed ID: 37268619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
    Zhang K; Robinson N; Lee SW; Guan C
    Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable cross-task adaptive transfer learning for motor imagery EEG classification.
    Miao M; Yang Z; Zeng H; Zhang W; Xu B; Hu W
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37963394
    [No Abstract]   [Full Text] [Related]  

  • 16. An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene.
    Tang Z; Wang H; Cui Z; Jin X; Zhang L; Peng Y; Xing B
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4390-4401. PubMed ID: 37910412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avoidance of specific calibration sessions in motor intention recognition for exoskeleton-supported rehabilitation through transfer learning on EEG data.
    Kueper N; Kim SK; Kirchner EA
    Sci Rep; 2024 Jul; 14(1):16690. PubMed ID: 39030206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.
    Tortora S; Tonin L; Sieghartsleitner S; Ortner R; Guger C; Lennon O; Coyle D; Menegatti E; Felice AD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2988-3003. PubMed ID: 37432820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification.
    Goh SK; Abbass HA; Tan KC; Al-Mamun A; Thakor N; Bezerianos A; Li J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1858-1867. PubMed ID: 30106679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.