These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38581421)

  • 41. Boolean factor graph model for biological systems: the yeast cell-cycle network.
    Kotiang S; Eslami A
    BMC Bioinformatics; 2021 Sep; 22(1):442. PubMed ID: 34535069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Taming Asynchrony for Attractor Detection in Large Boolean Networks.
    Mizera A; Pang J; Qu H; Yuan Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):31-42. PubMed ID: 29994682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Generating Boolean networks with a prescribed attractor structure.
    Pal R; Ivanov I; Datta A; Bittner ML; Dougherty ER
    Bioinformatics; 2005 Nov; 21(21):4021-5. PubMed ID: 16150807
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rhythmic and non-rhythmic attractors in asynchronous random Boolean networks.
    Di Paolo EA
    Biosystems; 2001 Mar; 59(3):185-95. PubMed ID: 11311467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ViSiBooL-visualization and simulation of Boolean networks with temporal constraints.
    Schwab J; Burkovski A; Siegle L; Müssel C; Kestler HA
    Bioinformatics; 2017 Feb; 33(4):601-604. PubMed ID: 27797768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the long-run sensitivity of probabilistic Boolean networks.
    Qian X; Dougherty ER
    J Theor Biol; 2009 Apr; 257(4):560-77. PubMed ID: 19168076
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlling large Boolean networks with single-step perturbations.
    Baudin A; Paul S; Su C; Pang J
    Bioinformatics; 2019 Jul; 35(14):i558-i567. PubMed ID: 31510648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detecting small attractors of large Boolean networks by function-reduction-based strategy.
    Zheng Q; Shen L; Shang X; Liu W
    IET Syst Biol; 2016 Apr; 10(2):49-56. PubMed ID: 26997659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Target Control of Asynchronous Boolean Networks.
    Su C; Pang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):707-719. PubMed ID: 34882560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of unperturbed and noisy generalized Boolean networks.
    Darabos Ch; Tomassini M; Giacobini M
    J Theor Biol; 2009 Oct; 260(4):531-44. PubMed ID: 19616562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Algebraic model checking for Boolean gene regulatory networks.
    Tran QN
    Adv Exp Med Biol; 2011; 696():113-22. PubMed ID: 21431552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ASP-G: an ASP-based method for finding attractors in genetic regulatory networks.
    Mushthofa M; Torres G; Van de Peer Y; Marchal K; De Cock M
    Bioinformatics; 2014 Nov; 30(21):3086-92. PubMed ID: 25028722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Boolean regulatory network reconstruction using literature based knowledge with a genetic algorithm optimization method.
    Dorier J; Crespo I; Niknejad A; Liechti R; Ebeling M; Xenarios I
    BMC Bioinformatics; 2016 Oct; 17(1):410. PubMed ID: 27716031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Dynamics of Canalizing Boolean Networks.
    Paul E; Pogudin G; Qin W; Laubenbacher R
    Complexity; 2020; 2020():. PubMed ID: 37538387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diversity of temporal correlations between genes in models of noisy and noiseless gene networks.
    Ribeiro AS; Lloyd-Price J; Chowdhury S; Yli-Harja O
    Biosystems; 2011; 104(2-3):136-44. PubMed ID: 21356270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Properties of Boolean networks and methods for their tests.
    Klotz JG; Feuer R; Sawodny O; Bossert M; Ederer M; Schober S
    EURASIP J Bioinform Syst Biol; 2013 Jan; 2013(1):1. PubMed ID: 23311536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Efficient Approach Towards the Source-Target Control of Boolean Networks.
    Paul S; Su C; Pang J; Mizera A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1932-1945. PubMed ID: 31095489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimising Boolean Synthetic Regulatory Networks to Control Cell States.
    Taou N; Lones M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2649-2658. PubMed ID: 32078555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Attractor-Specific and Common Expression Values in Random Boolean Network Models (with a Preliminary Look at Single-Cell Data).
    Villani M; D'Addese G; Kauffman SA; Serra R
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fixed-points in random Boolean networks: The impact of parallelism in the Barabási-Albert scale-free topology case.
    Moisset de Espanés P; Osses A; Rapaport I
    Biosystems; 2016 Dec; 150():167-176. PubMed ID: 27765600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.