These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38581832)

  • 1. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation.
    Zhao S; Guo T; Yao Y; Dong B; Zhao G
    Int J Food Microbiol; 2024 Jun; 417():110690. PubMed ID: 38581832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus.
    Han M; Xu ZY; Du C; Qian H; Zhang WG
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1425-33. PubMed ID: 27145779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor.
    Manowattana A; Techapun C; Watanabe M; Chaiyaso T
    J Biosci Bioeng; 2018 Jan; 125(1):59-66. PubMed ID: 28827048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoids production in different culture conditions by Sporidiobolus pararoseus.
    Han M; He Q; Zhang WG
    Prep Biochem Biotechnol; 2012; 42(4):293-303. PubMed ID: 22708808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway.
    Li C; Li B; Zhang N; Wei N; Wang Q; Wang W; Xie Y; Zou H
    J Gen Appl Microbiol; 2019 Jul; 65(3):111-120. PubMed ID: 30487371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased torulene production by the red yeast,
    Wei C; Wu T; Ao H; Qian X; Wang Z; Sun J
    Prep Biochem Biotechnol; 2020; 50(1):66-73. PubMed ID: 31502910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased torulene accumulation in red yeast Sporidiobolus pararoseus NGR as stress response to high salt conditions.
    Li C; Zhang N; Li B; Xu Q; Song J; Wei N; Wang W; Zou H
    Food Chem; 2017 Dec; 237():1041-1047. PubMed ID: 28763948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the wall-breaking method of carotenoids producing yeast
    Liu C; Cheng Y; Du C; Lv T; Guo Y; Han M; Pi F; Zhang W; Qian H
    Prep Biochem Biotechnol; 2019; 49(8):767-774. PubMed ID: 31050593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soy sauce fermentation: Microorganisms, aroma formation, and process modification.
    Devanthi PVP; Gkatzionis K
    Food Res Int; 2019 Jun; 120():364-374. PubMed ID: 31000250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507.
    Chaiyaso T; Manowattana A
    Prep Biochem Biotechnol; 2018 Jan; 48(1):13-23. PubMed ID: 29035150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review.
    Liu Y; Sun G; Li J; Cheng P; Song Q; Lv W; Wang C
    Food Res Int; 2024 May; 184():114273. PubMed ID: 38609250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of high-salt liquid-state soy sauce without any additives by inoculation of lactic acid bacteria and yeast.
    Liu R; Gao G; Bai Y; Hou L
    Food Sci Technol Int; 2020 Oct; 26(7):642-654. PubMed ID: 32375497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Koji Molds for Japanese Soy Sauce Brewing: Characteristics and Key Enzymes.
    Ito K; Matsuyama A
    J Fungi (Basel); 2021 Aug; 7(8):. PubMed ID: 34436196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation.
    Zhang L; Zhang L; Xu Y
    J Sci Food Agric; 2020 Apr; 100(6):2782-2790. PubMed ID: 32020610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation.
    Song YR; Jeong DY; Baik SH
    Food Microbiol; 2015 Oct; 51():171-8. PubMed ID: 26187842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of mutagenesis and adaptive evolution to engineer salt-tolerant and aroma-producing yeast for soy sauce fermentation.
    Li YC; Rao JW; Meng FB; Wang ZW; Liu DY; Yu H
    J Sci Food Agric; 2021 Aug; 101(10):4288-4297. PubMed ID: 33417246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation-promoting effect of three salt-tolerant Staphylococcus and their co-fermentation flavor characteristics with Zygosaccharomyces rouxii in soy sauce brewing.
    Zhang W; Xiao Z; Gu Z; Deng X; Liu J; Luo X; Song C; Jiang X
    Food Chem; 2024 Jan; 432():137245. PubMed ID: 37657348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards semi-synthetic microbial communities: enhancing soy sauce fermentation properties in B. subtilis co-cultures.
    Det-Udom R; Gilbert C; Liu L; Prakitchaiwattana C; Ellis T; Ledesma-Amaro R
    Microb Cell Fact; 2019 Jun; 18(1):101. PubMed ID: 31159886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Cellular Anti-Inflammatory Effect of Torularhodin Produced by
    Liu C; Han M; Lv F; Gao Y; Wang X; Zhang X; Guo Y; Cheng Y; Qian H
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single desaturase gene from red yeast Sporidiobolus pararoseus is responsible for both four- and five-step dehydrogenation of phytoene.
    Li C; Zhang N; Song J; Wei N; Li B; Zou H; Han X
    Gene; 2016 Sep; 590(1):169-76. PubMed ID: 27346167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.