BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38581898)

  • 1. Predicting Quercus gilva distribution dynamics and its response to climate change induced by GHGs emission through MaxEnt modeling.
    Shi J; Xia M; He G; Gonzalez NCT; Zhou S; Lan K; Ouyang L; Shen X; Jiang X; Cao F; Li H
    J Environ Manage; 2024 Apr; 357():120841. PubMed ID: 38581898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chromosome-scale genome assembly of
    Zhou X; Liu N; Jiang X; Qin Z; Farooq TH; Cao F; Li H
    Front Plant Sci; 2022; 13():1012277. PubMed ID: 36212339
    [No Abstract]   [Full Text] [Related]  

  • 3. Future habitat changes of
    Fu C; Wang X; Huang T; Wang R
    PeerJ; 2023; 11():e16459. PubMed ID: 38025688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China.
    Sun S; Zhang Y; Huang D; Wang H; Cao Q; Fan P; Yang N; Zheng P; Wang R
    Sci Total Environ; 2020 Nov; 744():140786. PubMed ID: 32702540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the potential distribution range of Batocera horsfieldi under CMIP6 climate change using the MaxEnt model.
    Wei X; Xu D; Liu Q; Wu Y; Zhuo Z
    J Econ Entomol; 2024 Feb; 117(1):187-198. PubMed ID: 38007398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Not the expected poleward migration: Impact of climate change scenarios on the distribution of two endemic evergreen broad-leaved Quercus species in China.
    Song H; Zhang X; Wang X; Wang Y; Li S; Xu Y
    Sci Total Environ; 2023 Sep; 889():164273. PubMed ID: 37209731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Disjunctive Marginal Edge of Evergreen Broad-Leaved Oak (
    Han EK; Cho WB; Park JS; Choi IS; Kwak M; Kim BY; Lee JH
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32977695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling.
    Li Y; Shao W; Jiang J
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21751-21768. PubMed ID: 34773237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential distribution of Blumea balsamifera in China using MaxEnt and the ex situ conservation based on its effective components and fresh leaf yield.
    Guan L; Yang Y; Jiang P; Mou Q; Gou Y; Zhu X; Xu YW; Wang R
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44003-44019. PubMed ID: 35122650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Potential Suitable Distribution Areas of
    Hou J; Xiang J; Li D; Liu X
    Biology (Basel); 2023 Feb; 12(3):. PubMed ID: 36979059
    [No Abstract]   [Full Text] [Related]  

  • 11. Contrasting range changes and drivers of four forest foundation species under future climate change in China.
    Luo W; Sun C; Yang S; Chen W; Sun Y; Li Z; Liu J; Tao W; Tao J
    Sci Total Environ; 2024 Sep; 942():173784. PubMed ID: 38851330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current distribution of two species of Chinese macaques (Macaca arctoides and Macaca thibetana) and the possible influence of climate change on future distribution.
    Li WB; Yang PP; Xia DP; Li M; Li JH
    Am J Primatol; 2023 Jun; 85(6):e23493. PubMed ID: 37056028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the potential distribution of the energy tree species Triadica sebifera in response to climate change in China.
    Liu M; Yang L; Su M; Gong W; Liu Y; Yang J; Huang Y; Zhao C
    Sci Rep; 2024 Jan; 14(1):1220. PubMed ID: 38216582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the potential suitable habitats of
    Yang QJ; Li R
    Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):538-548. PubMed ID: 33650363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China].
    Li Y; Zhang XW; Fang YM
    Ying Yong Sheng Tai Xue Bao; 2014 Dec; 25(12):3381-9. PubMed ID: 25876385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios.
    Geng W; Li Y; Sun D; Li B; Zhang P; Chang H; Rong T; Liu Y; Shao J; Liu Z; Zhu H; Lou Y; Wang Q; Zhang J
    PLoS One; 2022; 17(3):e0262540. PubMed ID: 35358194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of global potential suitable habitats of Nicotiana alata Link et Otto based on MaxEnt model.
    Zhang YF; Chen ST; Gao Y; Yang L; Yu H
    Sci Rep; 2023 Mar; 13(1):4851. PubMed ID: 36964182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the current and future suitable distribution range of
    Qian Q; Xu D; Liao W; Zhuo Z
    Bull Entomol Res; 2024 May; ():1-10. PubMed ID: 38699862
    [No Abstract]   [Full Text] [Related]  

  • 19. Predicting suitable distribution areas of
    Zhang WP; Hu YY; Li ZH; Feng XP; Li DW
    Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2514-2524. PubMed ID: 34313070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India.
    Kumar D; Rawat S
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.