BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38582162)

  • 1. Impact of different sterilisation techniques on sorption and NER formation of test chemicals in soil.
    Süßmuth R; Shrestha P; Andrea Diaz Navarrete C; Wege FF; Achten C; Hennecke D
    Chemosphere; 2024 Jun; 357():141915. PubMed ID: 38582162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil sterilisation methods for use in OECD 106: How effective are they?
    Lees K; Fitzsimons M; Snape J; Tappin A; Comber S
    Chemosphere; 2018 Oct; 209():61-67. PubMed ID: 29913400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The variability of standard artificial soils: cadmium and phenanthrene sorption measured by a batch equilibrium method.
    Bielská L; Hovorková I; Kuta J; Machát J; Hofman J
    Ecotoxicol Environ Saf; 2017 Jan; 135():17-23. PubMed ID: 27668322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of sterile storage, cation saturation and substrate additions on the degradability and extractability of nonylphenol and phenanthrene in soil.
    Shchegolikhina A; Marschner B
    Chemosphere; 2013 Nov; 93(9):2195-202. PubMed ID: 24011898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in atrazine and phenanthrene sorption behaviors during the aging of biochar in soils.
    Ren X; Yuan X; Sun H
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):81-90. PubMed ID: 27854057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dissolved organic carbon on desorption of aged phenanthrene from contaminated soils: A mechanistic study.
    Luo L; Chen Z; Cheng Y; Lv J; Cao D; Wen B
    Environ Pollut; 2019 Nov; 254(Pt A):113016. PubMed ID: 31400666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample.
    Wang X; Guo X; Yang Y; Tao S; Xing B
    Environ Sci Technol; 2011 Mar; 45(6):2124-30. PubMed ID: 21341701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.
    Marchal G; Smith KE; Rein A; Winding A; Wollensen de Jonge L; Trapp S; Karlson UG
    Environ Pollut; 2013 Oct; 181():200-10. PubMed ID: 23871817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of aging in field soil on biochar's properties and its sorption capacity.
    Ren X; Sun H; Wang F; Zhang P; Zhu H
    Environ Pollut; 2018 Nov; 242(Pt B):1880-1886. PubMed ID: 30061080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of non-extractable residues in soils: Towards a standardised approach.
    Loeffler D; Hatz A; Albrecht D; Fligg M; Hogeback J; Ternes TA
    Environ Pollut; 2020 Apr; 259():113826. PubMed ID: 31887596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction.
    Bielská L; Hovorková I; Komprdová K; Hofman J
    Environ Pollut; 2012 Apr; 163():1-7. PubMed ID: 22325424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation, classification and identification of non-extractable residues of
    Claßen D; Siedt M; Nguyen KT; Ackermann J; Schaeffer A
    Chemosphere; 2019 Oct; 232():164-170. PubMed ID: 31154176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The equilibria of bisolute sorption on soil.
    Xiao B; Huang W
    Chemosphere; 2011 May; 83(7):1005-13. PubMed ID: 21377187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments.
    Gao H; Ma J; Xu L; Jia L
    Environ Sci Pollut Res Int; 2014; 21(14):8620-30. PubMed ID: 24705921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of γ-irradiation of original and organic matter-amended soils on the sorption of triclosan and diuron from aqueous solutions.
    Borisover M; Keren Y; Usyskin A; Bukhanovsky N
    Chemosphere; 2016 Jun; 152():62-70. PubMed ID: 26963237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different versions of simulation studies following OECD 309 using
    Holzmann H; Prehm MS; Schäffer A
    Sci Total Environ; 2021 Jan; 753():142101. PubMed ID: 33207483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil - use and limits of data obtained from aqueous systems for predicting their fate in soil.
    Girardi C; Nowak KM; Carranza-Diaz O; Lewkow B; Miltner A; Gehre M; Schäffer A; Kästner M
    Sci Total Environ; 2013 Feb; 444():32-42. PubMed ID: 23262323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.
    Clegg H; Riding MJ; Oliver R; Jones KC; Semple KT
    J Hazard Mater; 2014 Aug; 278():336-42. PubMed ID: 24997252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil.
    Wang Y; Xu J; Shan J; Ma Y; Ji R
    Environ Pollut; 2017 May; 224():377-383. PubMed ID: 28216135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.