These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38582485)

  • 61. Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis.
    Xu GC; Bian YQ; Han RZ; Dong JJ; Ni Y
    Appl Biochem Biotechnol; 2016 Feb; 178(3):604-17. PubMed ID: 26494135
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond.
    Sakai G; Kojima K; Mori K; Oonishi Y; Sode K
    Biotechnol Lett; 2015 May; 37(5):1091-9. PubMed ID: 25650345
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Significance of H461 at subsite +1 in substrate binding and transglucosylation activity of amylomaltase from Corynebacterium glutamicum.
    Tumhom S; Krusong K; Kidokoro SI; Katoh E; Pongsawasdi P
    Arch Biochem Biophys; 2018 Aug; 652():3-8. PubMed ID: 29885290
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Engineering and kinetic stabilization of the therapeutic enzyme Anabeana variabilis phenylalanine ammonia lyase.
    Jaliani HZ; Farajnia S; Mohammadi SA; Barzegar A; Talebi S
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1805-18. PubMed ID: 23999738
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement.
    Farnoosh G; Khajeh K; Latifi AM; Aghamollaei H
    J Biosci; 2016 Dec; 41(4):577-588. PubMed ID: 27966481
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Counteraction of stability-activity trade-off of Nattokinase through flexible region shifting.
    Luo J; Song C; Cui W; Han L; Zhou Z
    Food Chem; 2023 Oct; 423():136241. PubMed ID: 37178594
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Engineering of serine protease for improved thermostability and catalytic activity using rational design.
    Ashraf NM; Krishnagopal A; Hussain A; Kastner D; Sayed AMM; Mok YK; Swaminathan K; Zeeshan N
    Int J Biol Macromol; 2019 Apr; 126():229-237. PubMed ID: 30590144
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges.
    Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C
    Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rational Design of Thermostable Carbonic Anhydrase Mutants Using Molecular Dynamics Simulations.
    Parra-Cruz R; Jäger CM; Lau PL; Gomes RL; Pordea A
    J Phys Chem B; 2018 Sep; 122(36):8526-8536. PubMed ID: 30114369
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R,R-2,3-butanediol: purification, characterization and cloning.
    Gao J; Yang HH; Feng XH; Li S; Xu H
    J Basic Microbiol; 2013 Sep; 53(9):733-41. PubMed ID: 22961752
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inside Out Computational Redesign of Cavities for Improving Thermostability and Catalytic Activity of
    Zhang Z; Long M; Zheng N; Lü X; Zhu C; Osire T; Xia X
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217222. PubMed ID: 36912632
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Attenuated substrate inhibition of a haloketone reductase via structure-guided loop engineering.
    Shang YP; Chen Q; Li AT; Quan S; Xu JH; Yu HL
    J Biotechnol; 2020 Jan; 308():141-147. PubMed ID: 31866427
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Disulfide Engineered Lipase to Enhance the Catalytic Activity: A Structure-Based Approach on BTL2.
    Godoy CA; Klett J; Di Geronimo B; Hermoso JA; Guisán JM; Carrasco-López C
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31652673
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improvement of the Stability and Activity of an LPMO Through Rational Disulfide Bonds Design.
    Zhou X; Xu Z; Li Y; He J; Zhu H
    Front Bioeng Biotechnol; 2021; 9():815990. PubMed ID: 35111741
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Engineering subtilisin E for enhanced stability and activity in polar organic solvents.
    Takagi H; Hirai K; Maeda Y; Matsuzawa H; Nakamori S
    J Biochem; 2000 Apr; 127(4):617-25. PubMed ID: 10739954
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of short-range Cys171-Cys178 disulfide bond in maintaining cutinase active site integrity: a molecular dynamics simulation.
    Matak MY; Moghaddam ME
    Biochem Biophys Res Commun; 2009 Dec; 390(2):201-4. PubMed ID: 19781526
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fine-tuning the activity and stability of an evolved enzyme active-site through noncanonical amino-acids.
    Wilkinson HC; Dalby PA
    FEBS J; 2021 Mar; 288(6):1935-1955. PubMed ID: 32897608
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein engineering of a disulfide bond in a beta/alpha-barrel protein.
    Eder J; Wilmanns M
    Biochemistry; 1992 May; 31(18):4437-44. PubMed ID: 1581299
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The natural mutation by deletion of Lys9 in the thrombin A-chain affects the pKa value of catalytic residues, the overall enzyme's stability and conformational transitions linked to Na+ binding.
    De Cristofaro R; Carotti A; Akhavan S; Palla R; Peyvandi F; Altomare C; Mannucci PM
    FEBS J; 2006 Jan; 273(1):159-69. PubMed ID: 16367756
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design.
    Xu P; Ni ZF; Zong MH; Ou XY; Yang JG; Lou WY
    Int J Biol Macromol; 2020 May; 150():9-15. PubMed ID: 32035157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.