These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38582502)

  • 1. Understanding the Cathode-Electrolyte Interfacial Chemistry in Rechargeable Magnesium Batteries.
    Shi H; Wang G; Wang Z; Yang L; Zhang S; Dong S; Qu B; Du A; Li Z; Zhou X; Cui G
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401536. PubMed ID: 38582502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Nanostructured Metal Chalcogenides as Cathode Materials for Rechargeable Magnesium Batteries.
    Regulacio MD; Nguyen DT; Horia R; Seh ZW
    Small; 2021 Jun; 17(25):e2007683. PubMed ID: 33893714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion-Incorporated Mg-Ion Solvation Modulation Enables Fast Magnesium Storage Kinetics of Conversion-Type Cathode Materials.
    Shen Y; Wang Y; Miao Y; Li Q; Zhao X; Shen X
    Adv Mater; 2023 May; 35(19):e2208289. PubMed ID: 36893768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure Characteristics of Cathode Materials for Rechargeable Magnesium Batteries.
    Li Z; Han L; Wang Y; Li X; Lu J; Hu X
    Small; 2019 Aug; 15(32):e1900105. PubMed ID: 30848086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries.
    Li L; Lu Y; Zhang Q; Zhao S; Hu Z; Chou SL
    Small; 2021 Mar; 17(9):e1902767. PubMed ID: 31617315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries.
    Pei C; Xiong F; Yin Y; Liu Z; Tang H; Sun R; An Q; Mai L
    Small; 2021 Jan; 17(3):e2004108. PubMed ID: 33354934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride-Free Electrolytes for High-Voltage Magnesium Metal Batteries: Challenges, Strategies, and Perspectives.
    Zhao W; Liu Y; Zhao X; Pan Z; Chen J; Zheng S; Qu L; Yang X
    Chemistry; 2023 Feb; 29(10):e202203334. PubMed ID: 36409403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries.
    Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y
    Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Mg
    Ma Y; Shuai K; Zhou L; Wang J; Wang Q
    Dalton Trans; 2020 Nov; 49(43):15397-15403. PubMed ID: 33140799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Design Strategies for Rechargeable Magnesium-Based Batteries.
    Zhang J; Chang Z; Zhang Z; Du A; Dong S; Li Z; Li G; Cui G
    ACS Nano; 2021 Oct; 15(10):15594-15624. PubMed ID: 34633797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics.
    Hou S; Ji X; Gaskell K; Wang PF; Wang L; Xu J; Sun R; Borodin O; Wang C
    Science; 2021 Oct; 374(6564):172-178. PubMed ID: 34618574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redesigning Solvation Structure toward Passivation-Free Magnesium Metal Batteries.
    Long J; Liu Y; He Z; Tan S; Xiong F; Xu H; Wang W; Zhang G; Yang Z; An Q
    ACS Nano; 2024 Jun; 18(23):15239-15248. PubMed ID: 38807482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Activated VOPO
    Ji X; Chen J; Wang F; Sun W; Ruan Y; Miao L; Jiang J; Wang C
    Nano Lett; 2018 Oct; 18(10):6441-6448. PubMed ID: 30192559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined Electrolyte and Interfacial Chemistry toward Realization of High-Energy Anode-Free Rechargeable Sodium Batteries.
    Zhang YY; Zhang CH; Guo YJ; Fan M; Zhao Y; Guo H; Wang WP; Tan SJ; Yin YX; Wang F; Xin S; Guo YG; Wan LJ
    J Am Chem Soc; 2023 Nov; 145(47):25643-25652. PubMed ID: 37970704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward High-Performance Mg/S Batteries with M4-Assisted Mg(AlCl
    Li Y; Cheng M; Liu Q; Wang R; Ma W; Li X; Hu J; Wei T; Liu C; Ling Y; Liu B; Chen M; Li W
    Small; 2024 Mar; 20(11):e2307396. PubMed ID: 37888791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolyte and Interphase Design for Magnesium Anode: Major Challenges and Perspectives.
    Sun Y; Ai F; Lu YC
    Small; 2022 Oct; 18(43):e2200009. PubMed ID: 35315571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the Reaction and Fading Mechanism of FeSe
    Tao D; Chen D; Yang H; Xu F
    Chemphyschem; 2022 Aug; 23(15):e202200248. PubMed ID: 35522010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Feasibility of Practical Mg-S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes.
    Salama M; Attias R; Hirsch B; Yemini R; Gofer Y; Noked M; Aurbach D
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36910-36917. PubMed ID: 30295459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.