These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38582513)

  • 1. Genome Editing VEGFA Prevents Corneal Neovascularization In Vivo.
    Zeng Z; Li S; Ye X; Wang Y; Wang Q; Chen Z; Wang Z; Zhang J; Wang Q; Chen L; Zhang S; Zou Z; Lin M; Chen X; Zhao G; McAlinden C; Lei H; Zhou X; Huang J
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401710. PubMed ID: 38582513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockdown of lncRNA TUG1 suppresses corneal angiogenesis through regulating miR-505-3p/VEGFA.
    Liu S; Gao J; Chen J
    Microvasc Res; 2021 Nov; 138():104233. PubMed ID: 34411571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Editing Inhibits Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy.
    Wu W; Lei H
    Methods Mol Biol; 2023; 2678():207-217. PubMed ID: 37326717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma.
    Liang C; Li F; Wang L; Zhang ZK; Wang C; He B; Li J; Chen Z; Shaikh AB; Liu J; Wu X; Peng S; Dang L; Guo B; He X; Au DWT; Lu C; Zhu H; Zhang BT; Lu A; Zhang G
    Biomaterials; 2017 Dec; 147():68-85. PubMed ID: 28938163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors Impacting Efficacy of AAV-Mediated CRISPR-Based Genome Editing for Treatment of Choroidal Neovascularization.
    Chung SH; Mollhoff IN; Nguyen U; Nguyen A; Stucka N; Tieu E; Manna S; Meleppat RK; Zhang P; Nguyen EL; Fong J; Zawadzki R; Yiu G
    Mol Ther Methods Clin Dev; 2020 Jun; 17():409-417. PubMed ID: 32128346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. METTL3-mediated m
    Wang W; Ye W; Chen S; Tang Y; Chen D; Lu Y; Wu Z; Huang Z; Ge Y
    Cell Signal; 2023 Sep; 109():110784. PubMed ID: 37356601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing abrogates angiogenesis in vivo.
    Huang X; Zhou G; Wu W; Duan Y; Ma G; Song J; Xiao R; Vandenberghe L; Zhang F; D'Amore PA; Lei H
    Nat Commun; 2017 Jul; 8(1):112. PubMed ID: 28740073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration.
    Koo T; Park SW; Jo DH; Kim D; Kim JH; Cho HY; Kim J; Kim JH; Kim JS
    Nat Commun; 2018 May; 9(1):1855. PubMed ID: 29748595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation.
    Huang X; Zhou G; Wu W; Ma G; D'Amore PA; Mukai S; Lei H
    Invest Ophthalmol Vis Sci; 2017 Feb; 58(2):1228-1236. PubMed ID: 28241310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long non-coding RNA H19 promotes corneal neovascularization by targeting microRNA-29c.
    Sun B; Ding Y; Jin X; Xu S; Zhang H
    Biosci Rep; 2019 May; 39(5):. PubMed ID: 30948500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Nintedanib Nanothermoreversible Hydrogel on Neovascularization in an Ocular Alkali Burn Rat Model.
    Liu X; Wu S; Gong Y; Yang L
    Curr Eye Res; 2022 Dec; 47(12):1578-1589. PubMed ID: 36259508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emodin suppresses alkali burn-induced corneal inflammation and neovascularization by the vascular endothelial growth factor receptor 2 signaling pathway.
    Xueying Z; Liang G; Siyi L; Fengyue LI; Mingli L; Wanting L; Chun M; Guanghui L
    J Tradit Chin Med; 2024 Apr; 44(2):268-276. PubMed ID: 38504533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial Membrane Protein-2 (EMP2) Antibody Blockade Reduces Corneal Neovascularization in an In Vivo Model.
    Sun MM; Chan AM; Law SM; Duarte S; Diaz-Aguilar D; Wadehra M; Gordon LK
    Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):245-254. PubMed ID: 30646013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiangiogenic effects of catalpol on rat corneal neovascularization.
    Han Y; Shen M; Tang LY; Tan G; Yang QC; Ye L; Ye LH; Jiang N; Gao GP; Shao Y
    Mol Med Rep; 2018 Feb; 17(2):2187-2194. PubMed ID: 29207076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a protein kinase B (Akt) inhibitor on the angiogenesis of HUVECs and corneal neovascularization.
    Wang X; Wang P
    Wien Klin Wochenschr; 2024 Mar; 136(5-6):154-162. PubMed ID: 37261487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap26 inhibited angiogenesis through the β-catenin-VE-cadherin-VEGFR2-Erk signaling pathway.
    Xu C; Zhong W; Zhang H; Jiang J; Zhou H
    Life Sci; 2023 Sep; 328():121836. PubMed ID: 37295713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proangiogenic Interactions of Vascular Endothelial MMP14 With VEGF Receptor 1 in VEGFA-Mediated Corneal Angiogenesis.
    Han KY; Chang JH; Lee H; Azar DT
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3313-22. PubMed ID: 27327585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential protective effects of miR-497 on corneal neovascularization are mediated via macrophage through the IL-6/STAT3/VEGF signaling pathway.
    Wang Y; Gao Y; Huang Y; Pan Y; Yu Y; Zhou Y; Wan SS; Yang YN
    Int Immunopharmacol; 2021 Jul; 96():107745. PubMed ID: 33984719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overactivation of Norepinephrine-β2-Adrenergic Receptor Axis Promotes Corneal Neovascularization.
    Dong Q; Qi B; Zhang B; Zhuang X; Chen S; Zhou Q; Zhang BN; Li S
    Invest Ophthalmol Vis Sci; 2023 Mar; 64(3):20. PubMed ID: 36897151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Type 2 Deiodinase-Dependent Increase in
    An X; Ogawa-Wong A; Carmody C; Ambrosio R; Cicatiello AG; Luongo C; Salvatore D; Handy DE; Larsen PR; Wajner SM; Dentice M; Zavacki AM
    Thyroid; 2021 Jan; 31(1):115-127. PubMed ID: 32787533
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.