These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38582635)

  • 1. A novel stochastic resonance based deep residual network for fault diagnosis of rolling bearing system.
    Zhang X; Ma Y; Pan Z; Wang G
    ISA Trans; 2024 May; 148():279-284. PubMed ID: 38582635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on a Bearing Fault Enhancement Diagnosis Method with Convolutional Neural Network Based on Adaptive Stochastic Resonance.
    Wang C; Qiao Z; Huang Z; Xu J; Fang S; Zhang C; Liu J; Zhu R; Lai Z
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel deep learning framework for rolling bearing fault diagnosis enhancement using VAE-augmented CNN model.
    Wang Y; Li D; Li L; Sun R; Wang S
    Heliyon; 2024 Aug; 10(15):e35407. PubMed ID: 39166054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAB-DrNet: Bearing Fault Diagnosis Method Based on an Improved Dilated Convolutional Neural Network.
    Zhang F; Yin Z; Xu F; Li Y; Xu G
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing.
    Liu R; Wang X; Kumar A; Sun B; Zhou Y
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network.
    Li H; Huang J; Ji S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fault Diagnosis of Rolling Bearings Is Conducted by Employing a Dual-Branch Convolutional Capsule Neural Network.
    Lu W; Liu J; Lin F
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Spiking Residual Shrinkage Network for Bearing Fault Diagnosis.
    Xu Z; Ma Y; Pan Z; Zheng X
    IEEE Trans Cybern; 2024 Mar; 54(3):1608-1613. PubMed ID: 37015456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive fractional stochastic resonance method based on weighted correctional signal-to-noise ratio and its application in fault feature enhancement of wind turbine.
    Zeng X; Lu X; Liu Z; Jin Y
    ISA Trans; 2022 Jan; 120():18-32. PubMed ID: 33766454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Fault Diagnosis Method for Rolling Bearings Based on Improved Residual Shrinkage Network Combined with Transfer Learning.
    Sun T; Gao J
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Feature Extraction Network Based on Acoustic Signal Feature Learning for Bearing Fault Diagnosis.
    Luo Y; Lu W; Kang S; Tian X; Kang X; Sun F
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonstationary feature extraction based on stochastic resonance and its application in rolling bearing fault diagnosis under strong noise background.
    Wang Z; Yang J; Guo Y; Gong T; Shan Z
    Rev Sci Instrum; 2023 Jan; 94(1):015110. PubMed ID: 36725570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.
    Shi H; Chen J; Si J; Zheng C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Adaptive Weak Fault Diagnosis Based on the Global Parameter Optimization Model of a Cascaded Stochastic Resonance System.
    Lai Z; Huang Z; Xu M; Wang C; Xu J; Zhang C; Zhu R; Qiao Z
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network.
    Wang Q; Sun Z; Zhu Y; Song C; Li D
    Math Biosci Eng; 2023 Nov; 20(11):19963-19982. PubMed ID: 38052632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings.
    Xie S; Ren G; Zhu J
    Sci Prog; 2020; 103(3):36850420951394. PubMed ID: 32880535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures.
    Xiong S; Zhou H; He S; Zhang L; Xia Q; Xuan J; Shi T
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent Fault Diagnosis of Rolling Bearing Based on Gramian Angular Difference Field and Improved Dual Attention Residual Network.
    Tong A; Zhang J; Xie L
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings.
    Kang Y; Chen G; Wang H; Pan W; Wei X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.