These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38582685)

  • 1. Influence of Deep Learning Based Image Reconstruction on Quantitative Results of Coronary Artery Calcium Scoring.
    Klemenz AC; Beckert L; Manzke M; Lang CI; Weber MA; Meinel FG
    Acad Radiol; 2024 Jun; 31(6):2259-2267. PubMed ID: 38582685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of deep learning image reconstructions (DLIR) on coronary artery calcium quantification.
    Rossi A; Gennari AG; Etter D; Benz DC; Sartoretti T; Giannopoulos AA; Mikail N; Bengs S; Maurer A; Gebhard C; Buechel RR; Kaufmann PA; Fuchs TA; Messerli M
    Eur Radiol; 2023 Jun; 33(6):3832-3838. PubMed ID: 36480026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative beam-hardening correction with advanced modeled iterative reconstruction in low voltage CT coronary calcium scoring with tin filtration: Impact on coronary artery calcium quantification and image quality.
    Tesche C; De Cecco CN; Schoepf UJ; Duguay TM; Albrecht MH; Caruso D; Varga-Szemes A; Lesslie VW; Ebersberger U; Canstein C; Thilo C; Hoffmann E; Allmendinger T; Nance JW
    J Cardiovasc Comput Tomogr; 2017; 11(5):354-359. PubMed ID: 28756086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Iterative Dose Reduction 3D Integrated with Automatic Tube Current Modulation for CT Coronary Artery Calcium Quantification: Comparison to Traditional Filtered Back Projection in an Anthropomorphic Phantom and Patients.
    Tang YC; Liu YC; Hsu MY; Tsai HY; Chen CM
    Acad Radiol; 2018 Aug; 25(8):1010-1017. PubMed ID: 29395796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Image Quality of Coronary Computed Tomography Angiography in Obese Patients by Comparing Deep Learning Image Reconstruction With Adaptive Statistical Iterative Reconstruction Veo.
    Wang H; Wang R; Li Y; Zhou Z; Gao Y; Bo K; Yu M; Sun Z; Xu L
    J Comput Assist Tomogr; 2022 Jan-Feb 01; 46(1):34-40. PubMed ID: 35099134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy.
    Benz DC; Benetos G; Rampidis G; von Felten E; Bakula A; Sustar A; Kudura K; Messerli M; Fuchs TA; Gebhard C; Pazhenkottil AP; Kaufmann PA; Buechel RR
    J Cardiovasc Comput Tomogr; 2020; 14(5):444-451. PubMed ID: 31974008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study.
    Li H; Li Z; Gao S; Hu J; Yang Z; Peng Y; Sun J
    J Xray Sci Technol; 2024; 32(3):513-528. PubMed ID: 38393883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study.
    Racine D; Becce F; Viry A; Monnin P; Thomsen B; Verdun FR; Rotzinger DC
    Phys Med; 2020 Aug; 76():28-37. PubMed ID: 32574999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT.
    Jiang B; Li N; Shi X; Zhang S; Li J; de Bock GH; Vliegenthart R; Xie X
    Radiology; 2022 Apr; 303(1):202-212. PubMed ID: 35040674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detectability of Hypoattenuating Liver Lesions with Deep Learning CT Reconstruction: A Phantom and Patient Study.
    Cao J; Mroueh N; Mercaldo N; Lennartz S; Kongboonvijit S; Srinivas Rao S; Pisuchpen N; Baliyan V; Pierce TT; Anderson MA; Sertic M; Shenoy-Bhangle AS; Kambadakone AR
    Radiology; 2024 Oct; 313(1):e232749. PubMed ID: 39377679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography.
    De Santis D; Polidori T; Tremamunno G; Rucci C; Piccinni G; Zerunian M; Pugliese L; Del Gaudio A; Guido G; Barbato L; Laghi A; Caruso D
    Radiol Med; 2023 Apr; 128(4):434-444. PubMed ID: 36847992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective evaluation of the influence of iterative reconstruction on the reproducibility of coronary calcium quantification in reduced radiation dose 320 detector row CT.
    Choi AD; Leifer ES; Yu J; Shanbhag SM; Bronson K; Arai AE; Chen MY
    J Cardiovasc Comput Tomogr; 2016; 10(5):359-63. PubMed ID: 27591767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of deep learning image reconstruction and adaptive statistical iterative reconstruction-V on coronary artery calcium quantification.
    Wang Y; Zhan H; Hou J; Ma X; Wu W; Liu J; Gao J; Guo Y; Zhang Y
    Ann Transl Med; 2021 Dec; 9(23):1726. PubMed ID: 35071420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography.
    Benz DC; Ersözlü S; Mojon FLA; Messerli M; Mitulla AK; Ciancone D; Kenkel D; Schaab JA; Gebhard C; Pazhenkottil AP; Kaufmann PA; Buechel RR
    Eur Radiol; 2022 Apr; 32(4):2620-2628. PubMed ID: 34792635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning imaging reconstruction of reduced-dose 40 keV virtual monoenergetic imaging for early detection of colorectal cancer liver metastases.
    Li S; Yuan L; Lu T; Yang X; Ren W; Wang L; Zhao J; Deng J; Liu X; Xue C; Sun Q; Zhang W; Zhou J
    Eur J Radiol; 2023 Nov; 168():111128. PubMed ID: 37816301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary emphysema quantification at low dose chest CT using Deep Learning image reconstruction.
    Ferri F; Bouzerar R; Auquier M; Vial J; Renard C
    Eur J Radiol; 2022 Jul; 152():110338. PubMed ID: 35533559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?
    Lyu P; Liu N; Harrawood B; Solomon J; Wang H; Chen Y; Rigiroli F; Ding Y; Schwartz FR; Jiang H; Lowry C; Wang L; Samei E; Gao J; Marin D
    Eur Radiol; 2023 Mar; 33(3):1629-1640. PubMed ID: 36323984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential for reduced radiation dose from deep learning-based CT image reconstruction: A comparison with filtered back projection and hybrid iterative reconstruction using a phantom.
    Lee JE; Choi SY; Hwang JA; Lim S; Lee MH; Yi BH; Cha JG
    Medicine (Baltimore); 2021 May; 100(19):e25814. PubMed ID: 34106619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in quantifying coronary calcium.
    Takahashi M; Kimura F; Umezawa T; Watanabe Y; Ogawa H
    J Cardiovasc Comput Tomogr; 2016; 10(1):61-8. PubMed ID: 26276567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study.
    Park HJ; Choi SY; Lee JE; Lim S; Lee MH; Yi BH; Cha JG; Min JH; Lee B; Jung Y
    Eur Radiol; 2022 Jun; 32(6):3974-3984. PubMed ID: 35064803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.