BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38583057)

  • 1. [A study on the distribution characteristics of peripheral retinal defocus in children and adolescents].
    Zheng XH; Shi HL; You JX; Li YS; Li CR
    Zhonghua Yan Ke Za Zhi; 2024 Apr; 60(4):337-342. PubMed ID: 38583057
    [No Abstract]   [Full Text] [Related]  

  • 2. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus.
    Benavente-Pérez A; Nour A; Troilo D
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6765-73. PubMed ID: 25190657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between refractive errors and ocular biometric parameters in children and adolescents: a systematic review and meta-analysis.
    Zhang Z; Mu J; Wei J; Geng H; Liu C; Yi W; Sun Y; Duan J
    BMC Ophthalmol; 2023 Nov; 23(1):472. PubMed ID: 37990308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Peripheral Refraction Profile in Myopes along the Horizontal Meridian.
    Yelagondula VK; Achanta DSR; Panigrahi S; Panthadi SK; Verkicharla PK
    Optom Vis Sci; 2022 Apr; 99(4):350-357. PubMed ID: 35383734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative peripheral hyperopia leads to greater short-term axial length growth in White children with myopia.
    Leighton RE; Breslin KM; Richardson P; Doyle L; McCullough SJ; Saunders KJ
    Ophthalmic Physiol Opt; 2023 Sep; 43(5):985-996. PubMed ID: 37340533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel application of multispectral refraction topography in the observation of myopic control effect by orthokeratology lens in adolescents.
    Ni NJ; Ma FY; Wu XM; Liu X; Zhang HY; Yu YF; Guo MC; Zhu SY
    World J Clin Cases; 2021 Oct; 9(30):8985-8998. PubMed ID: 34786382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spherical Soft Contact Lens Designs and Peripheral Defocus in Myopic Eyes.
    Moore KE; Benoit JS; Berntsen DA
    Optom Vis Sci; 2017 Mar; 94(3):370-379. PubMed ID: 28225372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes.
    Moderiano D; Do M; Hobbs S; Lam V; Sarin S; Alonso-Caneiro D; Chakraborty R
    Exp Eye Res; 2019 May; 182():125-136. PubMed ID: 30926510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses.
    Berntsen DA; Barr CD; Mutti DO; Zadnik K
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5761-70. PubMed ID: 23838771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral defocus with spherical and multifocal soft contact lenses.
    Berntsen DA; Kramer CE
    Optom Vis Sci; 2013 Nov; 90(11):1215-24. PubMed ID: 24076542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral defocus with single-vision spectacle lenses in myopic children.
    Lin Z; Martinez A; Chen X; Li L; Sankaridurg P; Holden BA; Ge J
    Optom Vis Sci; 2010 Jan; 87(1):4-9. PubMed ID: 19826316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes.
    Norton TT; Siegwart JT; Amedo AO
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4687-99. PubMed ID: 17065475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction between homatropine and optical blur on choroidal thickness.
    Sander BP; Collins MJ; Read SA
    Ophthalmic Physiol Opt; 2018 May; 38(3):257-265. PubMed ID: 29691923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Long-term results of perifocal defocus spectacle lens correction in children with progressive myopia].
    Tarutta EP; Proskurina OV; Tarasova NA; Milash SV; Markosyan GA
    Vestn Oftalmol; 2019; 135(5):46-53. PubMed ID: 31714512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The influence of different means of myopia correction on peripheral refraction depending on the direction of gaze].
    Tarutta EP; Tarasova NA; Milash SV; Proskurina OV; Markosian GA
    Vestn Oftalmol; 2019; 135(4):60-69. PubMed ID: 31573558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of peripheral refraction in myopic anisometropia in young adults.
    Du YQ; Zhou YH; Ding MW; Zhang MX; Guo YJ; Ge SS
    Int J Ophthalmol; 2023; 16(12):2082-2088. PubMed ID: 38111932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral refraction and ocular shape in children.
    Mutti DO; Sholtz RI; Friedman NE; Zadnik K
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1022-30. PubMed ID: 10752937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of anterior segment parameters and axial lengths of myopic, emmetropic, and hyperopic children.
    Dogan M; Elgin U; Sen E; Tekin K; Yilmazbas P
    Int Ophthalmol; 2019 Feb; 39(2):335-340. PubMed ID: 29285706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in relative peripheral refraction in children who switched from single-vision lenses to Defocus Incorporated Multiple Segments lenses.
    Zhang HY; Lam CSY; Tang WC; Lee PH; Tse DY; To CH
    Ophthalmic Physiol Opt; 2023 May; 43(3):319-326. PubMed ID: 36583393
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.