These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38583212)

  • 21. Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts.
    Searles K; Siddiqi G; Safonova OV; Copéret C
    Chem Sci; 2017 Apr; 8(4):2661-2666. PubMed ID: 28553501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancements of MOFs in the Field of Propane Oxidative Dehydrogenation for Propylene Production.
    Li ST; Ke M; Zhang J; Peng YL; Chen G
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites.
    Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG
    Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Density Lewis Acid Sites in Porous Single-Crystalline Monoliths to Enhance Propane Dehydrogenation at Reduced Temperatures.
    Lin G; Su Y; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9311-9315. PubMed ID: 33569871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the Selectivity of Hydrotalcite-Based Catalyst in the Propane Dehydrogenation Reaction.
    Festa G; Contaldo P; Martino M; Meloni E; Palma V
    Ind Eng Chem Res; 2023 Oct; 62(41):16622-16637. PubMed ID: 37869418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper.
    Han Z; Li S; Jiang F; Wang T; Ma X; Gong J
    Nanoscale; 2014 Sep; 6(17):10000-8. PubMed ID: 24933477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation.
    Kong N; Fan X; Liu F; Wang L; Lin H; Li Y; Lee ST
    ACS Nano; 2020 May; 14(5):5772-5779. PubMed ID: 32374154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen-Doped Graphene Monolith Catalysts for Oxidative Dehydrogenation of Propane.
    Liu W; Cao T; Dai X; Bai Y; Lu X; Li F; Qi W
    Front Chem; 2021; 9():759936. PubMed ID: 34722461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic Promotion Effect of Hydrogen and Dimethyl Disulfide Addition on Propane Dehydrogenation over the Pt-Sn-K/Al
    Wang GD; Jiang JW; Sui ZJ; Zhu YA; Zhou XG
    ACS Omega; 2022 Sep; 7(35):30773-30781. PubMed ID: 36092619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospun Alumina-Nanofiber-Supported Pt-Sn Catalyst for Propane Dehydrogenation.
    Choi YS; Oh K; Koh HL
    J Nanosci Nanotechnol; 2020 Nov; 20(11):6897-6903. PubMed ID: 32604533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Productive Propane Dehydrogenation Catalyst Using Silica-Supported Ga-Pt Nanoparticles Generated from Single-Sites.
    Searles K; Chan KW; Mendes Burak JA; Zemlyanov D; Safonova O; Copéret C
    J Am Chem Soc; 2018 Sep; 140(37):11674-11679. PubMed ID: 30145890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Active and Selective Sites for Propane Dehydrogenation in Zeolite Ga-BEA.
    Ni L; Khare R; Bermejo-Deval R; Zhao R; Tao L; Liu Y; Lercher JA
    J Am Chem Soc; 2022 Jul; 144(27):12347-12356. PubMed ID: 35771043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-Oxidative Propane Dehydrogenation on CrO
    Golubina EV; Kaplin IY; Gorodnova AV; Lokteva ES; Isaikina OY; Maslakov KI
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Explainable machine-learning predictions for catalysts in CO
    Liu H; Liu K; Zhu H; Guo W; Li Y
    RSC Adv; 2024 Feb; 14(11):7276-7282. PubMed ID: 38433939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GaPt Supported Catalytically Active Liquid Metal Solution Catalysis for Propane Dehydrogenation-Support Influence and Coking Studies.
    Raman N; Wolf M; Heller M; Heene-Würl N; Taccardi N; Haumann M; Felfer P; Wasserscheid P
    ACS Catal; 2021 Nov; 11(21):13423-13433. PubMed ID: 34777909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient conversion of propane in a microchannel reactor at ambient conditions.
    Li C; Zhang H; Liu W; Sheng L; Cheng MJ; Xu B; Luo G; Lu Q
    Nat Commun; 2024 Jan; 15(1):884. PubMed ID: 38287034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane.
    Marco Y; Roldán L; Muñoz E; García-Bordejé E
    ChemSusChem; 2014 Sep; 7(9):2496-504. PubMed ID: 25138580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between Surface Chemistry and Catalytic Performance of Mesoporous γ-Al
    Bai P; Ma Z; Li T; Tian Y; Zhang Z; Zhong Z; Xing W; Wu P; Liu X; Yan Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25979-25990. PubMed ID: 27636162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coke Formation during Propane Dehydrogenation over Ga-Rh Supported Catalytically Active Liquid Metal Solutions.
    Wolf M; Raman N; Taccardi N; Haumann M; Wasserscheid P
    ChemCatChem; 2020 Feb; 12(4):1085-1094. PubMed ID: 32194874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stability and catalytic performance of K-modified molybdena supported on a titanate nanostructured catalyst in the oxidative dehydrogenation of propane.
    Goudarzi E; Asadi R; Darian JT; Shahbazi Kootenaei A
    RSC Adv; 2019 Apr; 9(21):11797-11809. PubMed ID: 35517039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.