BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38583341)

  • 1. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis.
    Wu J; Yue B
    Biomed Pharmacother; 2024 May; 174():116563. PubMed ID: 38583341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Interactions of proliferation and differentiation signaling pathways in myogenesis].
    Milewska M; Grabiec K; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Key regulators of skeletal myogenesis].
    Kopantseva EE; Belyavsky AV
    Mol Biol (Mosk); 2016; 50(2):195-222. PubMed ID: 27239841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle stem cells in developmental and regenerative myogenesis.
    Kang JS; Krauss RS
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and cellular regulation of skeletal myogenesis.
    Comai G; Tajbakhsh S
    Curr Top Dev Biol; 2014; 110():1-73. PubMed ID: 25248473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells.
    Ciemerych MA; Archacka K; Grabowska I; Przewoźniak M
    Results Probl Cell Differ; 2011; 53():473-527. PubMed ID: 21630157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors.
    Zhu Q; Liang F; Cai S; Luo X; Duo T; Liang Z; He Z; Chen Y; Mo D
    Cell Death Dis; 2021 May; 12(6):514. PubMed ID: 34011940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Regulation of Differentiation of Mesenchymal Stem-cells into Skeletal Muscle: A Look at Signalling Molecules Involved in Myogenesis.
    Hodgson B; Mafi R; Mafi P; Khan
    Curr Stem Cell Res Ther; 2018; 13(5):384-407. PubMed ID: 28891439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flt3L is a novel regulator of skeletal myogenesis.
    Ge Y; Waldemer RJ; Nalluri R; Nuzzi PD; Chen J
    J Cell Sci; 2013 Aug; 126(Pt 15):3370-9. PubMed ID: 23704355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors.
    Mavrommatis L; Jeong HW; Kindler U; Gomez-Giro G; Kienitz MC; Stehling M; Psathaki OE; Zeuschner D; Bixel MG; Han D; Morosan-Puopolo G; Gerovska D; Yang JH; Kim JB; Arauzo-Bravo MJ; Schwamborn JC; Hahn SA; Adams RH; Schöler HR; Vorgerd M; Brand-Saberi B; Zaehres H
    Elife; 2023 Nov; 12():. PubMed ID: 37963071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet releasate promotes skeletal myogenesis by increasing muscle stem cell commitment to differentiation and accelerates muscle regeneration following acute injury.
    Scully D; Sfyri P; Verpoorten S; Papadopoulos P; Muñoz-Turrillas MC; Mitchell R; Aburima A; Patel K; Gutiérrez L; Naseem KM; Matsakas A
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13207. PubMed ID: 30339324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proline isomerase Pin1 represses terminal differentiation and myocyte enhancer factor 2C function in skeletal muscle cells.
    Magli A; Angelelli C; Ganassi M; Baruffaldi F; Matafora V; Battini R; Bachi A; Messina G; Rustighi A; Del Sal G; Ferrari S; Molinari S
    J Biol Chem; 2010 Nov; 285(45):34518-27. PubMed ID: 20801874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps.
    Endo T
    Biochem Biophys Res Commun; 2023 Nov; 682():223-243. PubMed ID: 37826946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration.
    Hernández-Hernández JM; García-González EG; Brun CE; Rudnicki MA
    Semin Cell Dev Biol; 2017 Dec; 72():10-18. PubMed ID: 29127045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiotrophin-1 maintains the undifferentiated state in skeletal myoblasts.
    Miyake T; Alli NS; Aziz A; Knudson J; Fernando P; Megeney LA; McDermott JC
    J Biol Chem; 2009 Jul; 284(29):19679-93. PubMed ID: 19439412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development.
    Grifone R; Xie X; Bourgeois A; Saquet A; Duprez D; Shi DL
    Mech Dev; 2014 Nov; 134():1-15. PubMed ID: 25217815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis.
    Zammit PS
    Semin Cell Dev Biol; 2017 Dec; 72():19-32. PubMed ID: 29127046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course and side-by-side analysis of mesodermal, pre-myogenic, myogenic and differentiated cell markers in the chicken model for skeletal muscle formation.
    Berti F; Nogueira JM; Wöhrle S; Sobreira DR; Hawrot K; Dietrich S
    J Anat; 2015 Sep; 227(3):361-82. PubMed ID: 26278933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.