BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38583606)

  • 21. [Effects of aquatic plants during their decay and decomposition on water quality].
    Tang JY; Cao PP; Xu C; Liu MS
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):83-9. PubMed ID: 23717994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The amounts and ratio of nitrogen and phosphorus addition drive the rate of litter decomposition in a subtropical forest.
    Tie L; Hu J; Peñuelas J; Sardans J; Wei S; Liu X; Zhou S; Huang C
    Sci Total Environ; 2022 Aug; 833():155163. PubMed ID: 35413342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of soil phosphorus cycling and bioavailability to plant invasion in river-lake ecotones.
    Yan Z; Lv T; Liu Y; Xing B; Chao C; Li Y; Wu L; Wang L; Liu C; Yu D
    Ecol Appl; 2023 Jun; 33(4):e2843. PubMed ID: 36922375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Invasive Plants and Species Richness Impact Litter Decomposition in Riparian Zones.
    Hu X; Arif M; Ding D; Li J; He X; Li C
    Front Plant Sci; 2022; 13():955656. PubMed ID: 35873999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America.
    Vivanco L; Austin AT
    Oecologia; 2006 Nov; 150(1):97-107. PubMed ID: 16917779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid nutrient cycling in leaf litter from invasive plants in Hawai'i.
    Allison SD; Vitousek PM
    Oecologia; 2004 Dec; 141(4):612-9. PubMed ID: 15549401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbes participated in macrophyte leaf litters decomposition in freshwater habitat.
    Zhao B; Xing P; Wu QL
    FEMS Microbiol Ecol; 2017 Oct; 93(10):. PubMed ID: 28961908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant functional traits mediate the response magnitude of plant-litter-soil microbial C: N: P stoichiometry to nitrogen addition in a desert steppe.
    Song Z; Zuo X; Zhao X; Qiao J; Ya H; Li X; Yue P; Chen M; Wang S; Medina-Roldán E
    Sci Total Environ; 2024 Mar; 915():169915. PubMed ID: 38190901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detritus quality controls macrophyte decomposition under different nutrient concentrations in a eutrophic shallow lake, North China.
    Li X; Cui B; Yang Q; Tian H; Lan Y; Wang T; Han Z
    PLoS One; 2012; 7(7):e42042. PubMed ID: 22848699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in western Sichuan plateau, Southwest China].
    Hu X; Wu N; Wu Y; Zuo WQ; Guo HX; Wang JN
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1226-32. PubMed ID: 22919831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen rather than carbon released by litter decomposition mediates nutrient relationships in a multispecies forest plantation with hemiparasite.
    Qin F; Lu J; Li Z; Meng S; Wang S; Liang J; He X
    Sci Total Environ; 2023 Aug; 888():164176. PubMed ID: 37201829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alinine forest streams].
    Zhang C; Yang WQ; Yue K; Huang CP; Peng Y; Wu FZ
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1601-8. PubMed ID: 26572009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau.
    Zhu W; Wang J; Zhang Z; Ren F; Chen L; He JS
    Sci Rep; 2016 Oct; 6():34290. PubMed ID: 27694948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aquatic omnivores shift their trophic position towards increased plant consumption as plant stoichiometry becomes more similar to their body stoichiometry.
    Zhang P; van den Berg RF; van Leeuwen CHA; Blonk BA; Bakker ES
    PLoS One; 2018; 13(9):e0204116. PubMed ID: 30235261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters.
    Seelen LMS; Flaim G; Keuskamp J; Teurlincx S; Arias Font R; Tolunay D; Fránková M; Šumberová K; Temponeras M; Lenhardt M; Jennings E; de Senerpont Domis LN
    Water Res; 2019 Mar; 151():31-43. PubMed ID: 30594088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Life form dependent impacts of macrophyte vegetation on the ratio of resuspended nutrients.
    Nurminen L; Horppila J
    Water Res; 2009 Jul; 43(13):3217-26. PubMed ID: 19505709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trait convergence and niche differentiation of two exotic invasive free-floating plant species in China under shifted water nutrient stoichiometric regimes.
    Wang T; Hu J; Wang R; Liu C; Yu D
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35779-35786. PubMed ID: 31705409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pond-bottom decomposition of leaf litters canopied by free-floating vegetation.
    Zhang YL; Li HB; Xu L; Pan X; Li WB; Liu J; Jiang YP; Song YB; Dong M
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8248-8256. PubMed ID: 30701469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.