These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38583630)
1. How and when glacial runoff is important: Tracing dynamics of meltwater and rainfall contribution to river runoff from headwaters to lowland in the Caucasus Mountains. Rets E; Khomiakova V; Kornilova E; Ekaykin A; Kozachek A; Mikhalenko V Sci Total Environ; 2024 Jun; 927():172201. PubMed ID: 38583630 [TBL] [Abstract][Full Text] [Related]
2. Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River. Zhang F; Qaiser FU; Zeng C; Pant RR; Wang G; Zhang H; Chen D Environ Sci Pollut Res Int; 2019 Aug; 26(23):23645-23660. PubMed ID: 31203542 [TBL] [Abstract][Full Text] [Related]
3. Incorporating glacier processes into hydrological simulations in the headwaters of the Yangtze and yellow Rivers. Chen L; Zhang Z; Liu C; Xiong S; Zhang W; Gao H; Yi Y Sci Total Environ; 2024 Nov; 951():175474. PubMed ID: 39142407 [TBL] [Abstract][Full Text] [Related]
4. Streamflow modeling and contribution of snow and glacier melt runoff in glacierized Upper Indus Basin. Gupta C; Kulkarni AV; Taloor AK Environ Monit Assess; 2021 Nov; 193(11):761. PubMed ID: 34719750 [TBL] [Abstract][Full Text] [Related]
5. Hydrograph apportionment of the Chandra River draining from a semi-arid region of the Upper Indus Basin, western Himalaya. Singh AT; Laluraj CM; Sharma P; Redkar BL; Patel LK; Pratap B; Oulkar S; Thamban M Sci Total Environ; 2021 Aug; 780():146500. PubMed ID: 33773352 [TBL] [Abstract][Full Text] [Related]
6. Particularity of hydrological processes under heavy ablation based on environmental isotopes in transition zones between endorheic and exorheic basins. Gui J; Li Z; Zhang B; Xue J; Du F; Si L J Environ Manage; 2023 Sep; 342():118198. PubMed ID: 37270977 [TBL] [Abstract][Full Text] [Related]
7. Historical reconstruction of glacier mass balance and its contribution to water resources in the Sawir Mountains from 2000 to 2020. Yu F; Wang P; Liu L; Li H; Zhang Z; Dai Y; Wang F; Chen P; Zhang M; Gao Y Sci Total Environ; 2024 Sep; 944():173703. PubMed ID: 38852870 [TBL] [Abstract][Full Text] [Related]
8. Simulating the hydrological regime of the snow fed and glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff model. Nazeer A; Maskey S; Skaugen T; McClain ME Sci Total Environ; 2022 Jan; 802():149872. PubMed ID: 34461480 [TBL] [Abstract][Full Text] [Related]
9. Spatial and temporal characteristics of stable isotopes in the Tarim River Basin. Sun C; Li X; Chen Y; Li W; Stotler RL; Zhang Y Isotopes Environ Health Stud; 2016 Jun; 52(3):281-97. PubMed ID: 26862902 [TBL] [Abstract][Full Text] [Related]
10. Climate and landscape controls on spatio-temporal patterns of stream water stable isotopes in a large glacierized mountain basin on the Tibetan Plateau. Gao M; Chen X; Wang J; Soulsby C; Cheng Q Sci Total Environ; 2021 Jun; 771():144799. PubMed ID: 33736150 [TBL] [Abstract][Full Text] [Related]
11. Hydrochemistry dynamics in a glacierized headwater catchment of Lhasa River, Tibetan Plateau. Mingyue L; Xuejun S; Shengnan L; Jie W; Zijian L; Qianggong Z Sci Total Environ; 2024 Apr; 919():170810. PubMed ID: 38336076 [TBL] [Abstract][Full Text] [Related]
12. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya. Gaddam VK; Kulkarni AV; Gupta AK Environ Monit Assess; 2018 Feb; 190(3):154. PubMed ID: 29464403 [TBL] [Abstract][Full Text] [Related]
13. Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change. Cauvy-Fraunié S; Espinosa R; Andino P; Jacobsen D; Dangles O PLoS One; 2015; 10(8):e0136793. PubMed ID: 26308853 [TBL] [Abstract][Full Text] [Related]
14. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska. Crossman J; Futter MN; Whitehead PG PLoS One; 2013; 8(9):e74054. PubMed ID: 24023925 [TBL] [Abstract][Full Text] [Related]
15. Hydrochemical assessment (major ions and Hg) of meltwater in high altitude glacierized Himalayan catchment. Lone A; Jeelani G; Deshpande RD; Kang S; Huang J Environ Monit Assess; 2019 Mar; 191(4):213. PubMed ID: 30852667 [TBL] [Abstract][Full Text] [Related]
16. [Characteristics of climate change and its impacts on water resources in Qilian Mountains, China]. Wang YH; Li DH; Lu GY; Jiang YY; Huang PC Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2805-2812. PubMed ID: 36384617 [TBL] [Abstract][Full Text] [Related]
17. Assessment of runoff in Chandra river basin of Western Himalaya using Remote Sensing and GIS Techniques. Gaddam VK; Myneni TK; Kulkarni AV; Zhang Y Environ Monit Assess; 2022 Feb; 194(3):145. PubMed ID: 35122167 [TBL] [Abstract][Full Text] [Related]
18. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach. Jeelani G; Shah RA; Jacob N; Deshpande RD Isotopes Environ Health Stud; 2017 Mar; 53(1):18-35. PubMed ID: 27246753 [TBL] [Abstract][Full Text] [Related]
19. Insight into the relationships between total suspended particles and mercury in meltwater in a typical glacierized basin in the inland Tibetan Plateau. Sun X; Zhang Q; Li M; Wang J; Lu Z; Guo J; Kang S; Shi J J Hazard Mater; 2023 Jun; 452():131250. PubMed ID: 37004441 [TBL] [Abstract][Full Text] [Related]
20. [Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau]. Sun XJ; Wang K; Guo JM; Kang SC; Zhang GS; Huang J; Cong ZY; Zhang QG Huan Jing Ke Xue; 2016 Feb; 37(2):482-9. PubMed ID: 27363134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]