These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38585004)

  • 1. Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy.
    Huang D; Lin C; Jiang Y; Xin E; Xu F; Gan Y; Xu R; Wang F; Zhang H; Lou K; Shi L; Hu H
    Front Oncol; 2024; 14():1348678. PubMed ID: 38585004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CT-based quantification of intratumoral heterogeneity for predicting pathologic complete response to neoadjuvant immunochemotherapy in non-small cell lung cancer.
    Ye G; Wu G; Zhang C; Wang M; Liu H; Song E; Zhuang Y; Li K; Qi Y; Liao Y
    Front Immunol; 2024; 15():1414954. PubMed ID: 38933281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography.
    Mao N; Shi Y; Lian C; Wang Z; Zhang K; Xie H; Zhang H; Chen Q; Cheng G; Xu C; Dai Y
    Eur Radiol; 2022 May; 32(5):3207-3219. PubMed ID: 35066632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy.
    Wang F; Yang H; Chen W; Ruan L; Jiang T; Cheng L; Jiang H; Fang M
    Curr Probl Cancer; 2024 Jun; 50():101098. PubMed ID: 38704949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning.
    Ma Y; Li Q
    Cancer Radiother; 2023 Dec; 27(8):705-711. PubMed ID: 37932182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intratumoral and peritumoral CT-based radiomics for predicting the microsatellite instability in gastric cancer.
    Chen X; Zhuang Z; Pen L; Xue J; Zhu H; Zhang L; Wang D
    Abdom Radiol (NY); 2024 May; 49(5):1363-1375. PubMed ID: 38305796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined predictive model based on radiomics features and clinical factors for disease progression in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy.
    Yang H; Wang L; Shao G; Dong B; Wang F; Wei Y; Li P; Chen H; Chen W; Zheng Y; He Y; Zhao Y; Du X; Sun X; Wang Z; Wang Y; Zhou X; Lai X; Feng W; Shen L; Qiu G; Ji Y; Chen J; Jiang Y; Liu J; Zeng J; Wang C; Zhao Q; Yang X; Hu X; Ma H; Chen Q; Chen M; Jiang H; Xu Y
    Front Oncol; 2022; 12():967360. PubMed ID: 35982975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intratumoral and peritumoral radiomics predict pathological response after neoadjuvant chemotherapy against advanced gastric cancer.
    Liu C; Li L; Chen X; Huang C; Wang R; Liu Y; Gao J
    Insights Imaging; 2024 Jan; 15(1):23. PubMed ID: 38270724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delta-radiomics features for predicting the major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer.
    Han X; Wang M; Zheng Y; Wang N; Wu Y; Ding C; Jia X; Yang R; Geng M; Chen Z; Zhang S; Zhang K; Li Y; Liu J; Gu J; Liao Y; Fan J; Shi H
    Eur Radiol; 2024 Apr; 34(4):2716-2726. PubMed ID: 37736804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients With Esophageal Squamous Cell Carcinoma.
    Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Chiu KWH; Fu J; Vardhanabhuti V
    JAMA Netw Open; 2020 Sep; 3(9):e2015927. PubMed ID: 32910196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study.
    Lin F; Li Q; Wang Z; Shi Y; Ma H; Zhang H; Zhang K; Yang P; Zhang R; Duan S; Gu Y; Mao N; Xie H
    Br J Radiol; 2023 Mar; 96(1143):20220068. PubMed ID: 36542866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI-based multiregional radiomics for preoperative prediction of tumor deposit and prognosis in resectable rectal cancer: a bicenter study.
    Li H; Chen XL; Liu H; Liu YS; Li ZL; Pang MH; Pu H
    Eur Radiol; 2023 Nov; 33(11):7561-7572. PubMed ID: 37160427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma.
    Zhang XF; Wu HY; Liang XW; Chen JL; Li J; Zhang S; Liu Z
    BMC Womens Health; 2024 Mar; 24(1):182. PubMed ID: 38504245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma.
    Liu HF; Wang M; Wang Q; Lu Y; Lu YJ; Sheng Y; Xing F; Zhang JL; Yu SN; Xing W
    Insights Imaging; 2024 Mar; 15(1):97. PubMed ID: 38536542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy.
    Lin Q; Wu HJ; Song QS; Tang YK
    Front Oncol; 2022; 12():937277. PubMed ID: 36267975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoscopic ultrasonography-based intratumoral and peritumoral machine learning radiomics analyses for distinguishing insulinomas from non-functional pancreatic neuroendocrine tumors.
    Mo S; Huang C; Wang Y; Zhao H; Wu W; Jiang H; Qin S
    Front Endocrinol (Lausanne); 2024; 15():1383814. PubMed ID: 38952387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer.
    Liu C; Zhao W; Xie J; Lin H; Hu X; Li C; Shang Y; Wang Y; Jiang Y; Ding M; Peng M; Xu T; Hu A; Huang Y; Gao Y; Liu X; Liu J; Ma F
    Front Immunol; 2023; 14():1115291. PubMed ID: 36875128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intratumoral and peritumoral radiomics based on contrast-enhanced MRI for preoperatively predicting treatment response of transarterial chemoembolization in hepatocellular carcinoma.
    Zhao Y; Zhang J; Wang N; Xu Q; Liu Y; Liu J; Zhang Q; Zhang X; Chen A; Chen L; Sheng L; Song Q; Wang F; Guo Y; Liu A
    BMC Cancer; 2023 Oct; 23(1):1026. PubMed ID: 37875815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T2WI-based MRI radiomics for the prediction of preoperative extranodal extension and prognosis in resectable rectal cancer.
    Li H; Chai L; Pu H; Yin LL; Li M; Zhang X; Liu YS; Pang MH; Lu T
    Insights Imaging; 2024 Feb; 15(1):57. PubMed ID: 38411722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients: use of MRI radiomics data from three regions with multiple machine learning algorithms.
    Zheng G; Peng J; Shu Z; Jin H; Han L; Yuan Z; Qin X; Hou J; He X; Gong X
    J Cancer Res Clin Oncol; 2024 Mar; 150(3):147. PubMed ID: 38512406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.