These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38585004)
21. Predicting chemotherapy response in non-small-cell lung cancer Chang R; Qi S; Zuo Y; Yue Y; Zhang X; Guan Y; Qian W Front Oncol; 2022; 12():915835. PubMed ID: 36003781 [TBL] [Abstract][Full Text] [Related]
22. Development and validation of peritumoral vascular and intratumoral radiomics to predict pathologic complete responses to neoadjuvant chemotherapy in patients with triple-negative breast cancer. Xie T; Gong J; Zhao Q; Wu C; Wu S; Peng W; Gu Y BMC Med Imaging; 2024 Jun; 24(1):136. PubMed ID: 38844842 [TBL] [Abstract][Full Text] [Related]
23. MRI-based multiregional radiomics for predicting lymph nodes status and prognosis in patients with resectable rectal cancer. Li H; Chen XL; Liu H; Lu T; Li ZL Front Oncol; 2022; 12():1087882. PubMed ID: 36686763 [TBL] [Abstract][Full Text] [Related]
24. A nomogram based on CT intratumoral and peritumoral radiomics features preoperatively predicts poorly differentiated invasive pulmonary adenocarcinoma manifesting as subsolid or solid lesions: a double-center study. Yang Z; Dong H; Fu C; Zhang Z; Hong Y; Shan K; Ma C; Chen X; Xu J; Pang Z; Hou M; Zhang X; Zhu W; Liu L; Li W; Sun J; Zhao F Front Oncol; 2024; 14():1289555. PubMed ID: 38313797 [TBL] [Abstract][Full Text] [Related]
25. Intratumoral and peritumoral CT-based radiomics strategy reveals distinct subtypes of non-small-cell lung cancer. Tang X; Huang H; Du P; Wang L; Yin H; Xu X J Cancer Res Clin Oncol; 2022 Sep; 148(9):2247-2260. PubMed ID: 35430688 [TBL] [Abstract][Full Text] [Related]
26. Intratumoral and peritumoral radiomics model based on abdominal ultrasound for predicting Ki-67 expression in patients with hepatocellular cancer. Qian H; Shen Z; Zhou D; Huang Y Front Oncol; 2023; 13():1209111. PubMed ID: 37711208 [TBL] [Abstract][Full Text] [Related]
27. Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study. Ye G; Wu G; Qi Y; Li K; Wang M; Zhang C; Li F; Wee L; Dekker A; Han C; Liu Z; Liao Y; Shi Z J Immunother Cancer; 2024 Sep; 12(9):. PubMed ID: 39231545 [TBL] [Abstract][Full Text] [Related]
28. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram. Liu Y; Li X; Zhu L; Zhao Z; Wang T; Zhang X; Cai B; Li L; Ma M; Ma X; Ming J Contrast Media Mol Imaging; 2022; 2022():6729473. PubMed ID: 36051932 [TBL] [Abstract][Full Text] [Related]
29. Peritumoral and Intratumoral Texture Features Based on Multiparametric MRI and Multiple Machine Learning Methods to Preoperatively Evaluate the Pathological Outcomes of Pancreatic Cancer. Xie N; Fan X; Chen D; Chen J; Yu H; He M; Liu H; Yin X; Li B; Wang H J Magn Reson Imaging; 2023 Aug; 58(2):379-391. PubMed ID: 36426965 [TBL] [Abstract][Full Text] [Related]
30. Intratumoral and Peritumoral Analysis of Mammography, Tomosynthesis, and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer: a Radiomics-Based Study. Jiang T; Song J; Wang X; Niu S; Zhao N; Dong Y; Wang X; Luo Y; Jiang X Mol Imaging Biol; 2022 Aug; 24(4):550-559. PubMed ID: 34904187 [TBL] [Abstract][Full Text] [Related]
31. Delta-radiomics based on CT predicts pathologic complete response in ESCC treated with neoadjuvant immunochemotherapy and surgery. Li K; Li Y; Wang Z; Huang C; Sun S; Liu X; Fan W; Zhang G; Li X Front Oncol; 2023; 13():1131883. PubMed ID: 37251937 [TBL] [Abstract][Full Text] [Related]
32. Clinical study on the prediction of ALN metastasis based on intratumoral and peritumoral DCE-MRI radiomics and clinico-radiological characteristics in breast cancer. Wang Y; Shang Y; Guo Y; Hai M; Gao Y; Wu Q; Li S; Liao J; Sun X; Wu Y; Wang M; Tan H Front Oncol; 2024; 14():1357145. PubMed ID: 38567148 [TBL] [Abstract][Full Text] [Related]
33. Establishing a predictive model for tumor mutation burden status based on CT radiomics and clinical features of non-small cell lung cancer patients. Yang J; Shi W; Yang Z; Yu H; Wang M; Wei Y; Wen J; Zheng W; Zhang P; Zhao W; Chen L Transl Lung Cancer Res; 2023 Apr; 12(4):808-823. PubMed ID: 37197623 [TBL] [Abstract][Full Text] [Related]
34. Machine Learning-Based Prediction of Pathological Responses and Prognosis After Neoadjuvant Chemotherapy for Non-Small-Cell Lung Cancer: A Retrospective Study. Jiang Z; Li Q; Ruan J; Li Y; Zhang D; Xu Y; Liao Y; Zhang X; Gao D; Li Z Clin Lung Cancer; 2024 Jul; 25(5):468-478.e3. PubMed ID: 38719649 [TBL] [Abstract][Full Text] [Related]
35. A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer. Li Z; Wang F; Zhang H; Xie S; Peng L; Xu H; Wang Y Eur J Surg Oncol; 2024 Apr; 50(4):108052. PubMed ID: 38447320 [TBL] [Abstract][Full Text] [Related]
36. Prediction of neoadjuvant chemotherapy pathological complete response for breast cancer based on radiomics nomogram of intratumoral and derived tissue. Zheng G; Hou J; Shu Z; Peng J; Han L; Yuan Z; He X; Gong X BMC Med Imaging; 2024 Jan; 24(1):22. PubMed ID: 38245712 [TBL] [Abstract][Full Text] [Related]
37. The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma. Yuan H; Xu X; Tu S; Chen B; Wei Y; Ma Y BMC Gastroenterol; 2022 Nov; 22(1):463. PubMed ID: 36384504 [TBL] [Abstract][Full Text] [Related]
38. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma. Yu Y; Fan Y; Wang X; Zhu M; Hu M; Shi C; Hu C Eur Radiol; 2022 Feb; 32(2):959-970. PubMed ID: 34480625 [TBL] [Abstract][Full Text] [Related]
39. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Braman NM; Etesami M; Prasanna P; Dubchuk C; Gilmore H; Tiwari P; Plecha D; Madabhushi A Breast Cancer Res; 2017 May; 19(1):57. PubMed ID: 28521821 [TBL] [Abstract][Full Text] [Related]
40. Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features. Wang J; Gao W; Lu M; Yao X; Yang D Front Oncol; 2023; 13():1290313. PubMed ID: 38044998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]