These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38585051)

  • 1. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review.
    Adisasmito S; Khoiruddin K; Sutrisna PD; Wenten IG; Siagian UWR
    ACS Omega; 2024 Apr; 9(13):14704-14727. PubMed ID: 38585051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Interface of Porous Cathode/Bipolar Membrane for Mitigation of Inorganic Precipitates in Direct Seawater Electrolysis.
    Han JH
    ChemSusChem; 2022 Jun; 15(11):e202200372. PubMed ID: 35332704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Design of Catalysts for Seawater Electrolysis for Hydrogen Production.
    Cui C; Zhang H; Wang D; Song J; Yang Y
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in Bipolar Membrane Electrodialysis Techniques for Carbon Capture.
    Khoiruddin K; Wenten IG; Siagian UWR
    Langmuir; 2024 May; 40(18):9362-9384. PubMed ID: 38680122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes.
    Bui JC; Digdaya I; Xiang C; Bell AT; Weber AZ
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52509-52526. PubMed ID: 33169965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives.
    Chen L; Yu C; Dong J; Han Y; Huang H; Li W; Zhang Y; Tan X; Qiu J
    Chem Soc Rev; 2024 Jul; 53(14):7455-7488. PubMed ID: 38855878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis.
    Zhang F; Zhou J; Chen X; Zhao S; Zhao Y; Tang Y; Tian Z; Yang Q; Slavcheva E; Lin Y; Zhang Q
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in direct seawater splitting for producing hydrogen.
    Xu SW; Li J; Zhang N; Shen W; Zheng Y; Xi P
    Chem Commun (Camb); 2023 Aug; 59(65):9792-9802. PubMed ID: 37527284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipolar Membranes Via Divergent Synthesis: On the Interplay between Ion Exchange Capacity and Water Dissociation Catalysis.
    Kao YL; Buchauer F; Serhiichuk D; Boettcher SW; Aili D
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39412035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends.
    Li Y; Xin T; Cao Z; Zheng W; He P; Yoon Suk Lee L
    ChemSusChem; 2024 Aug; 17(15):e202301926. PubMed ID: 38477449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis.
    He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q
    ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems.
    Liu Y; Wang Y; Fornasiero P; Tian G; Strasser P; Yang XY
    Angew Chem Int Ed Engl; 2024 Aug; ():e202412087. PubMed ID: 39205621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater.
    Xiao X; Yang L; Sun W; Chen Y; Yu H; Li K; Jia B; Zhang L; Ma T
    Small; 2022 Mar; 18(11):e2105830. PubMed ID: 34878210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Electrospinning-Electrospraying for High-Performance Bipolar Membranes with Incorporated MCM-41 as Water Dissociation Catalysts.
    Al-Dhubhani E; Tedesco M; de Vos WM; Saakes M
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45745-45755. PubMed ID: 37729586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Bipolar Membrane Development for Improved Water Dissociation.
    Chen Y; Wrubel JA; Klein WE; Kabir S; Smith WA; Neyerlin KC; Deutsch TG
    ACS Appl Polym Mater; 2020 Nov; 2(11):4559-4569. PubMed ID: 38434177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating water dissociation in bipolar membranes and for electrocatalysis.
    Oener SZ; Foster MJ; Boettcher SW
    Science; 2020 Aug; 369(6507):1099-1103. PubMed ID: 32616669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
    Vargas-Barbosa NM; Geise GM; Hickner MA; Mallouk TE
    ChemSusChem; 2014 Nov; 7(11):3017-20. PubMed ID: 25256955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises.
    Liu J; Duan S; Shi H; Wang T; Yang X; Huang Y; Wu G; Li Q
    Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202210753. PubMed ID: 35997542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging materials and technologies for electrocatalytic seawater splitting.
    Jin H; Xu J; Liu H; Shen H; Yu H; Jaroniec M; Zheng Y; Qiao SZ
    Sci Adv; 2023 Oct; 9(42):eadi7755. PubMed ID: 37851797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells.
    Wang X; Rossi R; Yan Z; Yang W; Hickner MA; Mallouk TE; Logan BE
    Environ Sci Technol; 2019 Dec; 53(24):14761-14768. PubMed ID: 31713416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.