These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38585092)
1. Performance Prediction and Heating Parameter Optimization of Organic-Rich Shale In Situ Conversion Based on Numerical Simulation and Artificial Intelligence Algorithms. Liu Y; Yao C; Liu B; Xuan Y; Du X ACS Omega; 2024 Apr; 9(13):15511-15526. PubMed ID: 38585092 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Numerical Simulation of Hydrocarbon Production and Reservoir Deformation of Oil Shale In Situ Conversion Processing Using a Downhole Burner. Liu Y; Xue L; Bai F; Zhao J; Yan Y ACS Omega; 2022 Jul; 7(27):23695-23707. PubMed ID: 35847291 [TBL] [Abstract][Full Text] [Related]
3. Machine learning-based fracturing parameter optimization for horizontal wells in Panke field shale oil. Li W; Zhang T; Liu X; Dong Z; Dong G; Qian S; Yang Z; Zou L; Lin K; Zhang T Sci Rep; 2024 Mar; 14(1):6046. PubMed ID: 38472299 [TBL] [Abstract][Full Text] [Related]
4. Experimental Investigation on the Pyrolysis and Conversion Characteristics of Organic-Rich Shale by Supercritical Water. Yao C; Meng F; Zhang H; Di T; Zhou Y; Du X ACS Omega; 2023 Dec; 8(51):49046-49056. PubMed ID: 38162776 [TBL] [Abstract][Full Text] [Related]
5. Study on Pyrolysis-Mechanics-Seepage Behavior of Oil Shale in a Closed System Subject to Real-Time Temperature Variations. Wang L; Su J; Yang D Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955300 [TBL] [Abstract][Full Text] [Related]
6. Optimization Analysis of In-Situ Conversion and Displacement in Continental Shale Reservoirs. Zhang Z; Montilla MJB; Li S; Li X; Hu Y ACS Omega; 2024 Sep; 9(38):39972-39985. PubMed ID: 39346822 [TBL] [Abstract][Full Text] [Related]
7. Factor analysis and mechanism disclosure of supercritical CO Li Q; Wang Y; Wang F; Ning X; Chuanbao Z; Zhang J; Zhang C Environ Sci Pollut Res Int; 2022 Mar; 29(12):17682-17694. PubMed ID: 34674133 [TBL] [Abstract][Full Text] [Related]
8. Release Mechanism of Volatile Products from Oil Shale Pressure-Controlled Pyrolysis Induced by Supercritical Carbon Dioxide. Zhao S; Su J; Wu J; Xiaoshu L ACS Omega; 2022 Dec; 7(50):47330-47340. PubMed ID: 36570204 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Effective Pyrolysis Zone and Heat Loss in Oil Shale Reservoir with Random Fractures. Yu H; Tang J; Zhang X; Ren L; Zhang X ACS Omega; 2023 Dec; 8(48):45687-45699. PubMed ID: 38075776 [TBL] [Abstract][Full Text] [Related]
10. Oil Shale In Situ Production Using a Novel Flow-Heat Coupling Approach. Jia B; Huang Z ACS Omega; 2024 Feb; 9(7):7705-7718. PubMed ID: 38405507 [TBL] [Abstract][Full Text] [Related]
11. Comparative study on the pyrolysis behavior and pyrolysate characteristics of Fushun oil shale during anhydrous pyrolysis and sub/supercritical water pyrolysis. Lu Y; Wang Z; Kang Z; Li W; Yang D; Zhao Y RSC Adv; 2022 Jun; 12(26):16329-16341. PubMed ID: 35747525 [TBL] [Abstract][Full Text] [Related]
12. Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. Meissner M; Schmuker M; Schneider G BMC Bioinformatics; 2006 Mar; 7():125. PubMed ID: 16529661 [TBL] [Abstract][Full Text] [Related]
13. The permeability of shale exposed to supercritical carbon dioxide. Wu D; Zhai W; Liu X; Xiao X; Xu J; Jia N; Miao F Sci Rep; 2023 Apr; 13(1):6734. PubMed ID: 37185792 [TBL] [Abstract][Full Text] [Related]
14. Investigations on the Performance of a Downhole Electric Heater with Different Parameters Used in Oil Shale In Situ Conversion. Ren D; Wang Z; Yang F; Zeng H; Zhang Z ACS Omega; 2024 Aug; 9(33):35600-35613. PubMed ID: 39184498 [TBL] [Abstract][Full Text] [Related]
15. Optimization-based artificial neural networks to fit the isotherm models parameters of aqueous-phase adsorption systems. Fagundez JLS; Salau NPG Environ Sci Pollut Res Int; 2022 Nov; 29(53):79798-79807. PubMed ID: 34719763 [TBL] [Abstract][Full Text] [Related]
16. Predicting the higher heating value of syngas pyrolyzed from sewage sludge using an artificial neural network. Li H; Xu Q; Xiao K; Yang J; Liang S; Hu J; Hou H; Liu B Environ Sci Pollut Res Int; 2020 Jan; 27(1):785-797. PubMed ID: 31811605 [TBL] [Abstract][Full Text] [Related]
17. High-Temperature-Induced Pore System Evolution of Immature Shale with Different Total Organic Carbon Contents. Zhuoke L; Lin T; Liu X; Ma S; Li X; Yang F; He B; Liu J; Zhang Y; Xie L ACS Omega; 2023 Apr; 8(14):12773-12786. PubMed ID: 37065028 [TBL] [Abstract][Full Text] [Related]
18. Prediction of line heating deformation on sheet metal based on an ISSA-ELM model. Li L; Qi S; Zhou H; Wang L Sci Rep; 2023 Jan; 13(1):1252. PubMed ID: 36690795 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Oil Recovery Method Selection for Shale Oil Based on Numerical Simulations. Mukhina E; Cheremisin A; Khakimova L; Garipova A; Dvoretskaya E; Zvada M; Kalacheva D; Prochukhan K; Kasyanenko A; Cheremisin A ACS Omega; 2021 Sep; 6(37):23731-23741. PubMed ID: 34568653 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneous Transport of Free CH Cheng L; Li D; Wang W; Liu J ACS Omega; 2021 Oct; 6(40):26756-26765. PubMed ID: 34661029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]