These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38585763)

  • 1. Hippocampal Signal Complexity and Rate-of-Change Predict Navigational Performance: Evidence from a Two-Week VR Training Program.
    Ozubko JD; Campbell M; Verhayden A; Demetri B; Brady M; Sivashankar Y; Brunec I
    bioRxiv; 2024 Mar; ():. PubMed ID: 38585763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans.
    Brunec IK; Bellana B; Ozubko JD; Man V; Robin J; Liu ZX; Grady C; Rosenbaum RS; Winocur G; Barense MD; Moscovitch M
    Curr Biol; 2018 Jul; 28(13):2129-2135.e6. PubMed ID: 29937352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis.
    Evensmoen HR; Ladstein J; Hansen TI; Møller JA; Witter MP; Nadel L; Håberg AK
    Hippocampus; 2015 Jan; 25(1):119-35. PubMed ID: 25155295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent posterior and transient anterior medial temporal lobe activity during navigation.
    Xu J; Evensmoen HR; Lehn H; Pintzka CW; Håberg AK
    Neuroimage; 2010 Oct; 52(4):1654-66. PubMed ID: 20677377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single voxel autocorrelation uncovers gradients of temporal dynamics in the hippocampus and entorhinal cortex during rest and navigation.
    Bouffard NR; Golestani A; Brunec IK; Bellana B; Park JY; Barense MD; Moscovitch M
    Cereb Cortex; 2023 Mar; 33(6):3265-3283. PubMed ID: 36573396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Clustering of Functional Signals Reveals Gradients in Processing Both within the Anterior Hippocampus and across Its Long Axis.
    Thorp JN; Gasser C; Blessing E; Davachi L
    J Neurosci; 2022 Sep; 42(39):7431-7441. PubMed ID: 36002264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations.
    Evensmoen HR; Lehn H; Xu J; Witter MP; Nadel L; Håberg AK
    J Cogn Neurosci; 2013 Nov; 25(11):1908-25. PubMed ID: 23806136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anterior versus posterior hippocampal oscillations debate in human spatial navigation: evidence from an electrocorticographic case study.
    Duarte IC; Castelhano J; Sales F; Castelo-Branco M
    Brain Behav; 2016 Sep; 6(9):e00507. PubMed ID: 27688937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereotypical hippocampal clustering predicts navigational success in virtualized real-world environments.
    Ozubko JD; Campbell M; Verhayden A; Demetri B; Brady M; Brunec I
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive Representations in Hippocampal and Prefrontal Hierarchies.
    Brunec IK; Momennejad I
    J Neurosci; 2022 Jan; 42(2):299-312. PubMed ID: 34799416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empowering episodic memory through a model-based egocentric navigational training.
    Fragueiro A; Tosoni A; Di Matteo R; Committeri G
    Psychol Res; 2023 Sep; 87(6):1743-1752. PubMed ID: 36478126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale goal distance representations in human hippocampus during virtual spatial navigation.
    Liu J; Chen D; Xiao X; Zhang H; Zhou W; Liang S; Kunz L; Schulze-Bonhage A; Axmacher N; Wang L
    Curr Biol; 2023 May; 33(10):2024-2033.e3. PubMed ID: 37148875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation.
    Sherrill KR; Erdem UM; Ross RS; Brown TI; Hasselmo ME; Stern CE
    J Neurosci; 2013 Dec; 33(49):19304-13. PubMed ID: 24305826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learned Spatial Schemas and Prospective Hippocampal Activity Support Navigation After One-Shot Learning.
    van Kesteren MTR; Brown TI; Wagner AD
    Front Hum Neurosci; 2018; 12():486. PubMed ID: 30564110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into anatomical connectivity along the anterior-posterior axis of the human hippocampus using
    Dalton MA; D'Souza A; Lv J; Calamante F
    Elife; 2022 Nov; 11():. PubMed ID: 36345716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task.
    Duarte IC; Ferreira C; Marques J; Castelo-Branco M
    PLoS One; 2014; 9(1):e86213. PubMed ID: 24475088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal participation in navigational map learning in young homing pigeons is dependent on training experience.
    Ioalè P; Gagliardo A; Bingman VP
    Eur J Neurosci; 2000 Feb; 12(2):742-50. PubMed ID: 10712654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental overlap influences goal-oriented coding of spatial sequences differently along the long-axis of hippocampus.
    He Q; Starnes J; Brown TI
    Hippocampus; 2022 Jun; 32(6):419-435. PubMed ID: 35312204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.