BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38585788)

  • 41. Conformational Changes of α-Crystallin Proteins Induced by Heat Stress.
    Chang YY; Hsieh MH; Huang YC; Chen CJ; Lee MT
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. alphaB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer.
    Jehle S; van Rossum B; Stout JR; Noguchi SM; Falber K; Rehbein K; Oschkinat H; Klevit RE; Rajagopal P
    J Mol Biol; 2009 Feb; 385(5):1481-97. PubMed ID: 19041879
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation.
    Treweek TM; Ecroyd H; Williams DM; Meehan S; Carver JA; Walker MJ
    PLoS One; 2007 Oct; 2(10):e1046. PubMed ID: 17940610
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wrapping the alpha-crystallin domain fold in a chaperone assembly.
    Stamler R; Kappé G; Boelens W; Slingsby C
    J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin.
    Mainz A; Bardiaux B; Kuppler F; Multhaup G; Felli IC; Pierattelli R; Reif B
    J Biol Chem; 2012 Jan; 287(2):1128-38. PubMed ID: 22090033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Loss of αB-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart.
    Mishra S; Wu SY; Fuller AW; Wang Z; Rose KL; Schey KL; Mchaourab HS
    J Biol Chem; 2018 Jan; 293(2):740-753. PubMed ID: 29162721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulated structural transitions unleash the chaperone activity of αB-crystallin.
    Peschek J; Braun N; Rohrberg J; Back KC; Kriehuber T; Kastenmüller A; Weinkauf S; Buchner J
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):E3780-9. PubMed ID: 24043785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide.
    Dehle FC; Ecroyd H; Musgrave IF; Carver JA
    Cell Stress Chaperones; 2010 Nov; 15(6):1013-26. PubMed ID: 20632140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin.
    Treweek TM; Rekas A; Walker MJ; Carver JA
    Exp Eye Res; 2010 Nov; 91(5):691-9. PubMed ID: 20732317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell biological roles of αB-crystallin.
    Boelens WC
    Prog Biophys Mol Biol; 2014 Jul; 115(1):3-10. PubMed ID: 24576798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Some properties of three αB-crystallin mutants carrying point substitutions in the C-terminal domain and associated with congenital diseases.
    Gerasimovich ES; Strelkov SV; Gusev NB
    Biochimie; 2017 Nov; 142():168-178. PubMed ID: 28919577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The decrease of the cytoskeleton tubulin follows the decrease of the associating molecular chaperone alphaB-crystallin in unloaded soleus muscle atrophy without stretch.
    Sakurai T; Fujita Y; Ohto E; Oguro A; Atomi Y
    FASEB J; 2005 Jul; 19(9):1199-201. PubMed ID: 15894563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding the structural and functional changes and biochemical pathomechanism of the cardiomyopathy-associated p.R123W mutation in human αB-crystallin.
    Somee LR; Barati A; Shahsavani MB; Hoshino M; Hong J; Kumar A; Moosavi-Movahedi AA; Amanlou M; Yousefi R
    Biochim Biophys Acta Gen Subj; 2024 Apr; 1868(4):130579. PubMed ID: 38307443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies of alphaB crystallin subunit dynamics by surface plasmon resonance.
    Liu L; Ghosh JG; Clark JI; Jiang S
    Anal Biochem; 2006 Mar; 350(2):186-95. PubMed ID: 16480679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HSPB5 engages multiple states of a destabilized client to enhance chaperone activity in a stress-dependent manner.
    Delbecq SP; Klevit RE
    J Biol Chem; 2019 Mar; 294(9):3261-3270. PubMed ID: 30567736
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of small molecules in modulating the chaperone activity of alphaB-crystallin against ordered and disordered protein aggregation.
    Ecroyd H; Carver JA
    FEBS J; 2008 Mar; 275(5):935-47. PubMed ID: 18218039
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8.
    Shatov VM; Weeks SD; Strelkov SV; Gusev NB
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30036999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deletion of (54)FLRAPSWF(61) residues decreases the oligomeric size and enhances the chaperone function of alphaB-crystallin.
    Santhoshkumar P; Murugesan R; Sharma KK
    Biochemistry; 2009 Jun; 48(23):5066-73. PubMed ID: 19388699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The lack of chaperonelike activity of Caenorhabditis elegans Hsp12.2 cannot be restored by domain swapping with human alphaB-crystallin.
    Kokke BP; Boelens WC; de Jong WW
    Cell Stress Chaperones; 2001 Oct; 6(4):360-7. PubMed ID: 11795473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in the quaternary structure and function of MjHSP16.5 attributable to deletion of the IXI motif and introduction of the substitution, R107G, in the α-crystallin domain.
    Quinlan RA; Zhang Y; Lansbury A; Williamson I; Pohl E; Sun F
    Philos Trans R Soc Lond B Biol Sci; 2013 May; 368(1617):20120327. PubMed ID: 23530263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.