BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38586002)

  • 1. Reference-informed prediction of alternative splicing and splicing-altering mutations from sequences.
    Xu C; Bao S; Chen H; Jiang T; Zhang C
    bioRxiv; 2024 Apr; ():. PubMed ID: 38586002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining genetic constraint with predictions of alternative splicing to prioritize deleterious splicing in rare disease studies.
    Cormier MJ; Pedersen BS; Bayrak-Toydemir P; Quinlan AR
    BMC Bioinformatics; 2022 Nov; 23(1):482. PubMed ID: 36376793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Splicing from Primary Sequence with Deep Learning.
    Jaganathan K; Kyriazopoulou Panagiotopoulou S; McRae JF; Darbandi SF; Knowles D; Li YI; Kosmicki JA; Arbelaez J; Cui W; Schwartz GB; Chow ED; Kanterakis E; Gao H; Kia A; Batzoglou S; Sanders SJ; Farh KK
    Cell; 2019 Jan; 176(3):535-548.e24. PubMed ID: 30661751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences.
    Krawczak M; Reiss J; Cooper DN
    Hum Genet; 1992; 90(1-2):41-54. PubMed ID: 1427786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and analysis of splicing quantitative trait loci across multiple tissues in the human genome.
    Garrido-Martín D; Borsari B; Calvo M; Reverter F; Guigó R
    Nat Commun; 2021 Feb; 12(1):727. PubMed ID: 33526779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Identification of Splicing Quantitative Trait Loci (sQTLs) in Diverse Ecotypes of
    Khokhar W; Hassan MA; Reddy ASN; Chaudhary S; Jabre I; Byrne LJ; Syed NH
    Front Plant Sci; 2019; 10():1160. PubMed ID: 31632417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of
    Jang W; Park J; Chae H; Kim M
    Int J Genomics; 2022; 2022():5265686. PubMed ID: 36275637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of splice-altering single nucleotide variants in the human genome.
    Jian X; Boerwinkle E; Liu X
    Nucleic Acids Res; 2014 Dec; 42(22):13534-44. PubMed ID: 25416802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the effect of variants on splicing using Convolutional Neural Networks.
    Thanapattheerakul T; Engchuan W; Chan JH
    PeerJ; 2020; 8():e9470. PubMed ID: 32704450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. m
    Parker MT; Soanes BK; Kusakina J; Larrieu A; Knop K; Joy N; Breidenbach F; Sherwood AV; Barton GJ; Fica SM; Davies BH; Simpson GG
    Elife; 2022 Nov; 11():. PubMed ID: 36409063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights of Noncanonical Splice-site Variants on RNA Splicing in Patients With Congenital Hypothyroidism.
    Albader N; Zou M; BinEssa HA; Abdi S; Al-Enezi AF; Meyer BF; Alzahrani AS; Shi Y
    J Clin Endocrinol Metab; 2022 Feb; 107(3):e1263-e1276. PubMed ID: 34632506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Experimentally Obtained Functional Impact Assessments of 5' Splice Site GT'GC Variants Differ Markedly from Those Predicted.
    Chen JM; Lin JH; Masson E; Liao Z; Férec C; Cooper DN; Hayden M
    Curr Genomics; 2020 Jan; 21(1):56-66. PubMed ID: 32655299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional Variation of Splicing QTLs in Human Brain.
    Zhang Y; Yang HT; Kadash-Edmondson K; Pan Y; Pan Z; Davidson BL; Xing Y
    Am J Hum Genet; 2020 Aug; 107(2):196-210. PubMed ID: 32589925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of computational methods for splice-disrupting variants and improving the performance using the machine learning-based framework.
    Liu H; Dai J; Li K; Sun Y; Wei H; Wang H; Zhao C; Wang DW
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35976049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introme accurately predicts the impact of coding and noncoding variants on gene splicing, with clinical applications.
    Sullivan PJ; Gayevskiy V; Davis RL; Wong M; Mayoh C; Mallawaarachchi A; Hort Y; McCabe MJ; Beecroft S; Jackson MR; Arts P; Dubowsky A; Laing N; Dinger ME; Scott HS; Oates E; Pinese M; Cowley MJ
    Genome Biol; 2023 May; 24(1):118. PubMed ID: 37198692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A missense mutation in TTC8/BBS8 affecting mRNA splicing in patients with non-syndromic retinitis pigmentosa.
    Goyal S; Vanita V
    Mol Genet Genomics; 2022 Sep; 297(5):1439-1449. PubMed ID: 35939099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of alternative 5'/3' splice sites based on the mechanism of splice site competition.
    Xia H; Bi J; Li Y
    Nucleic Acids Res; 2006; 34(21):6305-13. PubMed ID: 17098928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing.
    Chiang HL; Chen YT; Su JY; Lin HN; Yu CA; Hung YJ; Wang YL; Huang YT; Lin CL
    Nat Struct Mol Biol; 2022 Nov; 29(11):1043-1055. PubMed ID: 36303034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.