BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 38586411)

  • 21. Assessment of low salinity waterflooding in carbonate cores: Interfacial viscoelasticity and tuning process efficiency by use of non-ionic surfactant.
    Kar T; Cho H; Firoozabadi A
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):125-133. PubMed ID: 34500413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of non-ionic surfactants on the adsorption of polycyclic aromatic compounds at water/oil interface: A molecular simulation study.
    Sun X; Zeng H; Tang T
    J Colloid Interface Sci; 2021 Mar; 586():766-777. PubMed ID: 33190835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the Stability of Polymeric Nanoparticles Fabricated through Rapid Solvent Mixing.
    Morozova TI; Lee VE; Panagiotopoulos AZ; Prud'homme RK; Priestley RD; Nikoubashman A
    Langmuir; 2019 Jan; 35(3):709-717. PubMed ID: 30592617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals.
    Varanasi S; Henzel L; Mendoza L; Prathapan R; Batchelor W; Tabor R; Garnier G
    Front Chem; 2018; 6():409. PubMed ID: 30283771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability Mechanism of Nitrogen Foam in Porous Media with Silica Nanoparticles Modified by Cationic Surfactants.
    Wu Y; Fang S; Zhang K; Zhao M; Jiao B; Dai C
    Langmuir; 2018 Jul; 34(27):8015-8023. PubMed ID: 29889534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CO2 foam properties and the stabilizing mechanism of sodium bis(2-ethylhexyl)sulfosuccinate and hydrophobic nanoparticle mixtures.
    Zhang C; Li Z; Sun Q; Wang P; Wang S; Liu W
    Soft Matter; 2016 Jan; 12(3):946-56. PubMed ID: 26563818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of surfactants on interfacial films and stability of water-in-oil emulsions stabilized by asphaltenes.
    Ortiz DP; Baydak EN; Yarranton HW
    J Colloid Interface Sci; 2010 Nov; 351(2):542-55. PubMed ID: 20804982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maximizing oil recovery: Innovative chemical EOR solutions for residual oil mobilization in Kazakhstan's waterflooded sandstone oilfield.
    Shakeel M; Sagandykova D; Mukhtarov A; Dauyltayeva A; Maratbekkyzy L; Pourafshary P; Musharova D
    Heliyon; 2024 Apr; 10(7):e28915. PubMed ID: 38586411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery.
    Liu Z; Zhao G; Brewer M; Lv Q; Sudhölter EJR
    Adv Colloid Interface Sci; 2021 Aug; 294():102467. PubMed ID: 34175528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Critical Overview of ASP and Future Perspectives of NASP in EOR of Hydrocarbon Reservoirs: Potential Application, Prospects, Challenges and Governing Mechanisms.
    Sarbast R; Salih N; Préat A
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery.
    Muhammed NS; Haq MB; Al-Shehri D; Rahaman MM; Keshavarz A; Hossain SMZ
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33096763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Updated Perceptions on Polymer-Based Enhanced Oil Recovery toward High-Temperature High-Salinity Tolerance for Successful Field Applications in Carbonate Reservoirs.
    Hassan AM; Al-Shalabi EW; Ayoub MA
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of Polymers for Chemical Enhanced Oil Recovery: A Review.
    Gbadamosi A; Patil S; Kamal MS; Adewunmi AA; Yusuff AS; Agi A; Oseh J
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Challenges and future of chemical assisted heavy oil recovery processes.
    Ahmadi M; Chen Z
    Adv Colloid Interface Sci; 2020 Jan; 275():102081. PubMed ID: 31830684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymers for enhanced oil recovery: fundamentals and selection criteria.
    Rellegadla S; Prajapat G; Agrawal A
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4387-4402. PubMed ID: 28502065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymers for enhanced oil recovery: fundamentals and selection criteria revisited.
    Mahajan S; Yadav H; Rellegadla S; Agrawal A
    Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8073-8090. PubMed ID: 34609524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Polymer Flooding in China.
    Song K; Tao J; Lyu X; Xu Y; Liu S; Wang Z; Liu H; Zhang Y; Fu H; Meng E; Liu M; Guo H
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive Review of the Determination and Reduction of the Minimum Miscibility Pressure during CO
    Song G; Meng Y; Zhang C; Zhao Z; Yang Q
    ACS Omega; 2024 Apr; 9(13):14747-14765. PubMed ID: 38585095
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.