These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38586698)
1. An Economic Analysis for the Use of Artificial Intelligence in Screening for Diabetic Retinopathy in Trinidad and Tobago. Ramoutar RR Cureus; 2024 Mar; 16(3):e55745. PubMed ID: 38586698 [TBL] [Abstract][Full Text] [Related]
2. Artificial Intelligence in Community-Based Diabetic Retinopathy Telemedicine Screening in Urban China: Cost-effectiveness and Cost-Utility Analyses With Real-world Data. Lin S; Ma Y; Xu Y; Lu L; He J; Zhu J; Peng Y; Yu T; Congdon N; Zou H JMIR Public Health Surveill; 2023 Feb; 9():e41624. PubMed ID: 36821353 [TBL] [Abstract][Full Text] [Related]
3. Is Artificial Intelligence the Cost-Saving Lens to Diabetic Retinopathy Screening in Low- and Middle-Income Countries? Rizvi A; Rizvi F; Lalakia P; Hyman L; Frasso R; Sztandera L; Das AV Cureus; 2023 Sep; 15(9):e45539. PubMed ID: 37868419 [TBL] [Abstract][Full Text] [Related]
4. Cost-effectiveness of artificial intelligence screening for diabetic retinopathy in rural China. Huang XM; Yang BF; Zheng WL; Liu Q; Xiao F; Ouyang PW; Li MJ; Li XY; Meng J; Zhang TT; Cui YH; Pan HW BMC Health Serv Res; 2022 Feb; 22(1):260. PubMed ID: 35216586 [TBL] [Abstract][Full Text] [Related]
5. Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening. Xie Y; Gunasekeran DV; Balaskas K; Keane PA; Sim DA; Bachmann LM; Macrae C; Ting DSW Transl Vis Sci Technol; 2020 Apr; 9(2):22. PubMed ID: 32818083 [TBL] [Abstract][Full Text] [Related]
6. Cost-effectiveness analysis of artificial intelligence-based diabetic retinopathy screening in rural China based on the Markov model. Li H; Li G; Li N; Liu C; Yuan Z; Gao Q; Hao S; Fan S; Yang J PLoS One; 2023; 18(11):e0291390. PubMed ID: 37971984 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Xie Y; Nguyen QD; Hamzah H; Lim G; Bellemo V; Gunasekeran DV; Yip MYT; Qi Lee X; Hsu W; Li Lee M; Tan CS; Tym Wong H; Lamoureux EL; Tan GSW; Wong TY; Finkelstein EA; Ting DSW Lancet Digit Health; 2020 May; 2(5):e240-e249. PubMed ID: 33328056 [TBL] [Abstract][Full Text] [Related]
8. Impact of Artificial Intelligence Assessment of Diabetic Retinopathy on Referral Service Uptake in a Low-Resource Setting: The RAIDERS Randomized Trial. Mathenge W; Whitestone N; Nkurikiye J; Patnaik JL; Piyasena P; Uwaliraye P; Lanouette G; Kahook MY; Cherwek DH; Congdon N; Jaccard N Ophthalmol Sci; 2022 Dec; 2(4):100168. PubMed ID: 36531575 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425 [TBL] [Abstract][Full Text] [Related]
10. Strategies to Tackle the Global Burden of Diabetic Retinopathy: From Epidemiology to Artificial Intelligence. Wong TY; Sabanayagam C Ophthalmologica; 2020; 243(1):9-20. PubMed ID: 31408872 [TBL] [Abstract][Full Text] [Related]
11. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Grzybowski A; Singhanetr P; Nanegrungsunk O; Ruamviboonsuk P Ophthalmol Ther; 2023 Jun; 12(3):1419-1437. PubMed ID: 36862308 [TBL] [Abstract][Full Text] [Related]
12. A pilot cost-analysis study comparing AI-based EyeArt® and ophthalmologist assessment of diabetic retinopathy in minority women in Oslo, Norway. Karabeg M; Petrovski G; Hertzberg SN; Erke MG; Fosmark DS; Russell G; Moe MC; Volke V; Raudonis V; Verkauskiene R; Sokolovska J; Haugen IK; Petrovski BE Int J Retina Vitreous; 2024 May; 10(1):40. PubMed ID: 38783384 [TBL] [Abstract][Full Text] [Related]
13. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Tufail A; Rudisill C; Egan C; Kapetanakis VV; Salas-Vega S; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Srinivas S; Nittala M; Sadda S; Taylor P; Rudnicka AR Ophthalmology; 2017 Mar; 124(3):343-351. PubMed ID: 28024825 [TBL] [Abstract][Full Text] [Related]
14. [Using artificial intelligence as an initial triage strategy in diabetic retinopathy screening program in China]. Li ZX; Zhang J; Fong N; He MG Zhonghua Yi Xue Za Zhi; 2020 Dec; 100(48):3835-3840. PubMed ID: 33371627 [No Abstract] [Full Text] [Related]
16. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
17. Population impact and cost-effectiveness of artificial intelligence-based diabetic retinopathy screening in people living with diabetes in Australia: a cost effectiveness analysis. Hu W; Joseph S; Li R; Woods E; Sun J; Shen M; Jan CL; Zhu Z; He M; Zhang L EClinicalMedicine; 2024 Jan; 67():102387. PubMed ID: 38314061 [TBL] [Abstract][Full Text] [Related]
18. Present and future screening programs for diabetic retinopathy: a narrative review. Abou Taha A; Dinesen S; Vergmann AS; Grauslund J Int J Retina Vitreous; 2024 Feb; 10(1):14. PubMed ID: 38310265 [TBL] [Abstract][Full Text] [Related]
19. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]