BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38586896)

  • 1. Iron-arsenide monolayers as an anode material for lithium-ion batteries: a first-principles study.
    Kumar A; Parida P
    Phys Chem Chem Phys; 2024 Apr; 26(15):12060-12069. PubMed ID: 38586896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the potential of a BCN-biphenylene monolayer as a high-performance anode material for alkali metal ion batteries: a first-principles study.
    Kumar A; Parida P
    Nanoscale; 2024 Jun; ():. PubMed ID: 38912560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study.
    Lv X; Li F; Gong J; Gu J; Lin S; Chen Z
    Phys Chem Chem Phys; 2020 Apr; 22(16):8902-8912. PubMed ID: 32289818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on electrochemical performance of striped, β12 and χ3 Borophene as anode materials for lithium-ion batteries.
    Karimzadeh S; Safaei B; Jen TC
    J Mol Graph Model; 2023 May; 120():108423. PubMed ID: 36731208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CrXY (X/Y = S, Se, Te) monolayers as efficient anode materials for Li and Na-ion batteries: a first-principles study.
    Sahoo S; Kumari P; Ray SJ
    RSC Adv; 2024 Feb; 14(9):5771-5781. PubMed ID: 38362081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers.
    Sun X; Wang Z
    Beilstein J Nanotechnol; 2017; 8():2711-2718. PubMed ID: 29354342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic VS
    Liu B; Gao T; Liao P; Wen Y; Yao M; Shi S; Zhang W
    Phys Chem Chem Phys; 2021 Sep; 23(34):18784-18793. PubMed ID: 34612417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the potential of MB
    Han Y; Wang L; Zheng B; Wang J; Zhang L; Xiao B
    RSC Adv; 2024 Apr; 14(16):11112-11120. PubMed ID: 38590358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional V
    Liu H; Cai Y; Guo Z; Zhou J
    ACS Omega; 2022 May; 7(21):17756-17764. PubMed ID: 35664630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Intercalation of Lithium in Semi-Metallic γ-GeSe Nanosheet: A New Group-IV Monochalcogenide for Lithium-Ion Battery Application.
    Shu Z; Cui X; Wang B; Yan H; Cai Y
    ChemSusChem; 2022 Aug; 15(15):e202200564. PubMed ID: 35680606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexagonal Ti
    Bo T; Liu PF; Xu J; Zhang J; Chen Y; Eriksson O; Wang F; Wang BT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22168-22178. PubMed ID: 30116799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Ions Intercalation Mechanism in Layered Anode From First-Principles Calculation.
    Zhang J; Lu X; Zhang J; Li H; Huang B; Chen B; Zhou J; Jing S
    Front Chem; 2021; 9():677620. PubMed ID: 34041225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory.
    Benzidi H; Lakhal M; Garara M; Abdellaoui M; Benyoussef A; El Kenz A; Mounkachi O
    Phys Chem Chem Phys; 2019 Sep; 21(36):19951-19962. PubMed ID: 31475997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolayer molybdenum diborides containing flat and buckled boride layers as anode materials for lithium-ion batteries.
    Barik G; Pal S
    Phys Chem Chem Phys; 2023 Jul; 25(26):17667-17679. PubMed ID: 37366646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study.
    Wu P; Li P; Huang M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT prediction of two-dimensional MB
    Wang J; Bai L; Zhao X; Gao H; Niu L
    RSC Adv; 2022 Oct; 12(44):28525-28532. PubMed ID: 36320537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion.
    Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS
    Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides.
    Jiao Y; Wu W; Ma F; Yu ZM; Lu Y; Sheng XL; Zhang Y; Yang SA
    Nanoscale; 2019 Sep; 11(35):16508-16514. PubMed ID: 31453618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs.
    Wang H; Jing Z; Liu H; Feng X; Meng G; Wu K; Cheng Y; Xiao B
    Nanoscale; 2020 Dec; 12(48):24510-24526. PubMed ID: 33320160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.