These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38586896)

  • 41. Out-of-plane ion transport makes nitrogenated holey graphite a promising high-rate anode for both Li and Na ion batteries.
    Huang H; Wu HH; Chi C; Zhu J; Huang B; Zhang TY
    Nanoscale; 2019 Oct; 11(40):18758-18768. PubMed ID: 31591618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced performance of Mo
    Liu X; Lin S; Gao J; Shi H; Kim SG; Chen Z; Lee H
    Phys Chem Chem Phys; 2021 Feb; 23(6):4030-4038. PubMed ID: 33554982
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of Li
    Julien CM; Mauger A
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. S-functionalized 2D V
    Wang Y; Ma N; Zhang Y; Liang B; Zhao J; Fan J
    Phys Chem Chem Phys; 2023 Feb; 25(5):4015-4024. PubMed ID: 36649114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functionalized two-dimensional iron boride compounds as novel electrode materials in Li-ion batteries.
    Liu Y; Wang H; Fu Y; Li D; Wei M; Wu Q; Hu Q
    Phys Chem Chem Phys; 2023 Aug; 25(34):23133-23140. PubMed ID: 37603370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries.
    Du W; Liu J; Zeb A; Lin X
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37652-37666. PubMed ID: 35960813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-dimensional Dirac TiB
    Etrini A; Elomrani A; Oukahou S; Maymoun M; Sbiaai K; Hasnaoui A
    Phys Chem Chem Phys; 2023 Aug; 25(32):21699-21707. PubMed ID: 37551786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defective phosphorene as an anode material for high-performance Li-, Na-, and K-ion batteries: a first-principles study.
    Atashzar SM; Javadian S; Gharibi H; Rezaei Z
    Nanoscale; 2020 Oct; 12(39):20364-20373. PubMed ID: 33016970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical deformation: A feasible route for reconfiguration of inner interfaces to modulate the high performance of three-dimensional porous carbon material anodes in stretchable lithium-Ion batteries.
    Wang S; Chen Z; Yang B; Chen H; Ruckenstein E
    J Colloid Interface Sci; 2019 Nov; 555():431-437. PubMed ID: 31400535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First-principles study of borophene/phosphorene heterojunction as anode material for lithium-ion batteries.
    Yang Z; Li W; Zhang J
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34736229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First-principles study of two-dimensional C-silicyne nanosheet as a promising anode material for rechargeable Li-ion batteries.
    Duhan N; Dhilip Kumar TJ
    Phys Chem Chem Phys; 2022 Aug; 24(34):20274-20281. PubMed ID: 35975638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced performance of PC
    Gao H; Su N
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37285857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-principles calculations of an asymmetric MoO
    Zhang Q; Zhu D; Li X; Zhang Y
    RSC Adv; 2020 Nov; 10(71):43312-43318. PubMed ID: 35519678
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A density functional theory study of high-performance pre-lithiated MS
    Liu T; Jin Z; Liu DX; Du C; Wang L; Lin H; Li Y
    Sci Rep; 2020 Apr; 10(1):6897. PubMed ID: 32327695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.
    Putungan DB; Lin SH; Kuo JL
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18754-62. PubMed ID: 27373121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A boron-exposed TiB
    Li R; Wang Y; Xu LC; Shen J; Zhao W; Yang Z; Liu R; Shao JL; Guo C; Li X
    Phys Chem Chem Phys; 2020 Oct; 22(39):22236-22243. PubMed ID: 33000818
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Density Functional Theory Study of Bilayer Borophene-Based Anode Material for Rechargeable Lithium Ion Batteries.
    Gao N; Ye P; Chen J; Xiao J; Yang X
    Langmuir; 2023 Jul; 39(29):10270-10279. PubMed ID: 37439717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multiferroic iron arsenide monolayer.
    Xuan X; Yang T; Zhou J; Zhang Z; Guo W
    Nanoscale Adv; 2022 Mar; 4(5):1324-1329. PubMed ID: 36133690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theoretically evaluating two-dimensional tetragonal Si
    Wang J; Wu H; Liu Z; Pan M; Huang Z; Pan L; Han L; Zhang K; Zhao Y; Deng H
    Phys Chem Chem Phys; 2022 Nov; 24(42):26241-26253. PubMed ID: 36278962
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blue-AsP monolayer as a promising anode material for lithium- and sodium-ion batteries: a DFT study.
    Zhang J; Zhang YF; Li Y; Ren YR; Huang S; Lin W; Chen WK
    Phys Chem Chem Phys; 2021 Mar; 23(9):5143-5151. PubMed ID: 33624671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.